This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | psrbag0.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| Assertion | psrbagsn | |- ( I e. V -> ( x e. I |-> if ( x = K , 1 , 0 ) ) e. D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrbag0.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 2 | 1nn0 | |- 1 e. NN0 |
|
| 3 | 0nn0 | |- 0 e. NN0 |
|
| 4 | 2 3 | ifcli | |- if ( x = K , 1 , 0 ) e. NN0 |
| 5 | 4 | a1i | |- ( ( T. /\ x e. I ) -> if ( x = K , 1 , 0 ) e. NN0 ) |
| 6 | 5 | fmpttd | |- ( T. -> ( x e. I |-> if ( x = K , 1 , 0 ) ) : I --> NN0 ) |
| 7 | 6 | mptru | |- ( x e. I |-> if ( x = K , 1 , 0 ) ) : I --> NN0 |
| 8 | eqid | |- ( x e. I |-> if ( x = K , 1 , 0 ) ) = ( x e. I |-> if ( x = K , 1 , 0 ) ) |
|
| 9 | 8 | mptpreima | |- ( `' ( x e. I |-> if ( x = K , 1 , 0 ) ) " NN ) = { x e. I | if ( x = K , 1 , 0 ) e. NN } |
| 10 | snfi | |- { K } e. Fin |
|
| 11 | inss1 | |- ( { x | x = K } i^i I ) C_ { x | x = K } |
|
| 12 | dfrab2 | |- { x e. I | x = K } = ( { x | x = K } i^i I ) |
|
| 13 | df-sn | |- { K } = { x | x = K } |
|
| 14 | 11 12 13 | 3sstr4i | |- { x e. I | x = K } C_ { K } |
| 15 | ssfi | |- ( ( { K } e. Fin /\ { x e. I | x = K } C_ { K } ) -> { x e. I | x = K } e. Fin ) |
|
| 16 | 10 14 15 | mp2an | |- { x e. I | x = K } e. Fin |
| 17 | 0nnn | |- -. 0 e. NN |
|
| 18 | iffalse | |- ( -. x = K -> if ( x = K , 1 , 0 ) = 0 ) |
|
| 19 | 18 | eleq1d | |- ( -. x = K -> ( if ( x = K , 1 , 0 ) e. NN <-> 0 e. NN ) ) |
| 20 | 17 19 | mtbiri | |- ( -. x = K -> -. if ( x = K , 1 , 0 ) e. NN ) |
| 21 | 20 | con4i | |- ( if ( x = K , 1 , 0 ) e. NN -> x = K ) |
| 22 | 21 | a1i | |- ( x e. I -> ( if ( x = K , 1 , 0 ) e. NN -> x = K ) ) |
| 23 | 22 | ss2rabi | |- { x e. I | if ( x = K , 1 , 0 ) e. NN } C_ { x e. I | x = K } |
| 24 | ssfi | |- ( ( { x e. I | x = K } e. Fin /\ { x e. I | if ( x = K , 1 , 0 ) e. NN } C_ { x e. I | x = K } ) -> { x e. I | if ( x = K , 1 , 0 ) e. NN } e. Fin ) |
|
| 25 | 16 23 24 | mp2an | |- { x e. I | if ( x = K , 1 , 0 ) e. NN } e. Fin |
| 26 | 9 25 | eqeltri | |- ( `' ( x e. I |-> if ( x = K , 1 , 0 ) ) " NN ) e. Fin |
| 27 | 7 26 | pm3.2i | |- ( ( x e. I |-> if ( x = K , 1 , 0 ) ) : I --> NN0 /\ ( `' ( x e. I |-> if ( x = K , 1 , 0 ) ) " NN ) e. Fin ) |
| 28 | 1 | psrbag | |- ( I e. V -> ( ( x e. I |-> if ( x = K , 1 , 0 ) ) e. D <-> ( ( x e. I |-> if ( x = K , 1 , 0 ) ) : I --> NN0 /\ ( `' ( x e. I |-> if ( x = K , 1 , 0 ) ) " NN ) e. Fin ) ) ) |
| 29 | 27 28 | mpbiri | |- ( I e. V -> ( x e. I |-> if ( x = K , 1 , 0 ) ) e. D ) |