This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The volume of a disjoint finite union of measurable sets is the sum of the measures. (Contributed by Mario Carneiro, 25-Jun-2014) (Revised by Mario Carneiro, 11-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | volfiniun | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝐴 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( vol ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq | ⊢ ( 𝑤 = ∅ → ( ∀ 𝑘 ∈ 𝑤 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ↔ ∀ 𝑘 ∈ ∅ ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) ) | |
| 2 | disjeq1 | ⊢ ( 𝑤 = ∅ → ( Disj 𝑘 ∈ 𝑤 𝐵 ↔ Disj 𝑘 ∈ ∅ 𝐵 ) ) | |
| 3 | 1 2 | anbi12d | ⊢ ( 𝑤 = ∅ → ( ( ∀ 𝑘 ∈ 𝑤 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝑤 𝐵 ) ↔ ( ∀ 𝑘 ∈ ∅ ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ∅ 𝐵 ) ) ) |
| 4 | iuneq1 | ⊢ ( 𝑤 = ∅ → ∪ 𝑘 ∈ 𝑤 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵 ) | |
| 5 | 4 | fveq2d | ⊢ ( 𝑤 = ∅ → ( vol ‘ ∪ 𝑘 ∈ 𝑤 𝐵 ) = ( vol ‘ ∪ 𝑘 ∈ ∅ 𝐵 ) ) |
| 6 | sumeq1 | ⊢ ( 𝑤 = ∅ → Σ 𝑘 ∈ 𝑤 ( vol ‘ 𝐵 ) = Σ 𝑘 ∈ ∅ ( vol ‘ 𝐵 ) ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑤 = ∅ → ( ( vol ‘ ∪ 𝑘 ∈ 𝑤 𝐵 ) = Σ 𝑘 ∈ 𝑤 ( vol ‘ 𝐵 ) ↔ ( vol ‘ ∪ 𝑘 ∈ ∅ 𝐵 ) = Σ 𝑘 ∈ ∅ ( vol ‘ 𝐵 ) ) ) |
| 8 | 3 7 | imbi12d | ⊢ ( 𝑤 = ∅ → ( ( ( ∀ 𝑘 ∈ 𝑤 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝑤 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝑤 𝐵 ) = Σ 𝑘 ∈ 𝑤 ( vol ‘ 𝐵 ) ) ↔ ( ( ∀ 𝑘 ∈ ∅ ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ∅ 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ ∅ 𝐵 ) = Σ 𝑘 ∈ ∅ ( vol ‘ 𝐵 ) ) ) ) |
| 9 | raleq | ⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑘 ∈ 𝑤 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ↔ ∀ 𝑘 ∈ 𝑦 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) ) | |
| 10 | disjeq1 | ⊢ ( 𝑤 = 𝑦 → ( Disj 𝑘 ∈ 𝑤 𝐵 ↔ Disj 𝑘 ∈ 𝑦 𝐵 ) ) | |
| 11 | 9 10 | anbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( ∀ 𝑘 ∈ 𝑤 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝑤 𝐵 ) ↔ ( ∀ 𝑘 ∈ 𝑦 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝑦 𝐵 ) ) ) |
| 12 | iuneq1 | ⊢ ( 𝑤 = 𝑦 → ∪ 𝑘 ∈ 𝑤 𝐵 = ∪ 𝑘 ∈ 𝑦 𝐵 ) | |
| 13 | 12 | fveq2d | ⊢ ( 𝑤 = 𝑦 → ( vol ‘ ∪ 𝑘 ∈ 𝑤 𝐵 ) = ( vol ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 14 | sumeq1 | ⊢ ( 𝑤 = 𝑦 → Σ 𝑘 ∈ 𝑤 ( vol ‘ 𝐵 ) = Σ 𝑘 ∈ 𝑦 ( vol ‘ 𝐵 ) ) | |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝑤 = 𝑦 → ( ( vol ‘ ∪ 𝑘 ∈ 𝑤 𝐵 ) = Σ 𝑘 ∈ 𝑤 ( vol ‘ 𝐵 ) ↔ ( vol ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) = Σ 𝑘 ∈ 𝑦 ( vol ‘ 𝐵 ) ) ) |
| 16 | 11 15 | imbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( ( ∀ 𝑘 ∈ 𝑤 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝑤 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝑤 𝐵 ) = Σ 𝑘 ∈ 𝑤 ( vol ‘ 𝐵 ) ) ↔ ( ( ∀ 𝑘 ∈ 𝑦 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝑦 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) = Σ 𝑘 ∈ 𝑦 ( vol ‘ 𝐵 ) ) ) ) |
| 17 | raleq | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ 𝑤 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ↔ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) ) | |
| 18 | disjeq1 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( Disj 𝑘 ∈ 𝑤 𝐵 ↔ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) | |
| 19 | 17 18 | anbi12d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑘 ∈ 𝑤 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝑤 𝐵 ) ↔ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ) |
| 20 | iuneq1 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ∪ 𝑘 ∈ 𝑤 𝐵 = ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) | |
| 21 | 20 | fveq2d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( vol ‘ ∪ 𝑘 ∈ 𝑤 𝐵 ) = ( vol ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) |
| 22 | sumeq1 | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑤 ( vol ‘ 𝐵 ) = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ 𝐵 ) ) | |
| 23 | 21 22 | eqeq12d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( vol ‘ ∪ 𝑘 ∈ 𝑤 𝐵 ) = Σ 𝑘 ∈ 𝑤 ( vol ‘ 𝐵 ) ↔ ( vol ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ 𝐵 ) ) ) |
| 24 | 19 23 | imbi12d | ⊢ ( 𝑤 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( ∀ 𝑘 ∈ 𝑤 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝑤 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝑤 𝐵 ) = Σ 𝑘 ∈ 𝑤 ( vol ‘ 𝐵 ) ) ↔ ( ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ 𝐵 ) ) ) ) |
| 25 | raleq | ⊢ ( 𝑤 = 𝐴 → ( ∀ 𝑘 ∈ 𝑤 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) ) | |
| 26 | disjeq1 | ⊢ ( 𝑤 = 𝐴 → ( Disj 𝑘 ∈ 𝑤 𝐵 ↔ Disj 𝑘 ∈ 𝐴 𝐵 ) ) | |
| 27 | 25 26 | anbi12d | ⊢ ( 𝑤 = 𝐴 → ( ( ∀ 𝑘 ∈ 𝑤 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝑤 𝐵 ) ↔ ( ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝐴 𝐵 ) ) ) |
| 28 | iuneq1 | ⊢ ( 𝑤 = 𝐴 → ∪ 𝑘 ∈ 𝑤 𝐵 = ∪ 𝑘 ∈ 𝐴 𝐵 ) | |
| 29 | 28 | fveq2d | ⊢ ( 𝑤 = 𝐴 → ( vol ‘ ∪ 𝑘 ∈ 𝑤 𝐵 ) = ( vol ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 30 | sumeq1 | ⊢ ( 𝑤 = 𝐴 → Σ 𝑘 ∈ 𝑤 ( vol ‘ 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( vol ‘ 𝐵 ) ) | |
| 31 | 29 30 | eqeq12d | ⊢ ( 𝑤 = 𝐴 → ( ( vol ‘ ∪ 𝑘 ∈ 𝑤 𝐵 ) = Σ 𝑘 ∈ 𝑤 ( vol ‘ 𝐵 ) ↔ ( vol ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( vol ‘ 𝐵 ) ) ) |
| 32 | 27 31 | imbi12d | ⊢ ( 𝑤 = 𝐴 → ( ( ( ∀ 𝑘 ∈ 𝑤 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝑤 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝑤 𝐵 ) = Σ 𝑘 ∈ 𝑤 ( vol ‘ 𝐵 ) ) ↔ ( ( ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝐴 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( vol ‘ 𝐵 ) ) ) ) |
| 33 | 0mbl | ⊢ ∅ ∈ dom vol | |
| 34 | mblvol | ⊢ ( ∅ ∈ dom vol → ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) ) | |
| 35 | 33 34 | ax-mp | ⊢ ( vol ‘ ∅ ) = ( vol* ‘ ∅ ) |
| 36 | ovol0 | ⊢ ( vol* ‘ ∅ ) = 0 | |
| 37 | 35 36 | eqtri | ⊢ ( vol ‘ ∅ ) = 0 |
| 38 | 0iun | ⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ | |
| 39 | 38 | fveq2i | ⊢ ( vol ‘ ∪ 𝑘 ∈ ∅ 𝐵 ) = ( vol ‘ ∅ ) |
| 40 | sum0 | ⊢ Σ 𝑘 ∈ ∅ ( vol ‘ 𝐵 ) = 0 | |
| 41 | 37 39 40 | 3eqtr4i | ⊢ ( vol ‘ ∪ 𝑘 ∈ ∅ 𝐵 ) = Σ 𝑘 ∈ ∅ ( vol ‘ 𝐵 ) |
| 42 | 41 | a1i | ⊢ ( ( ∀ 𝑘 ∈ ∅ ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ∅ 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ ∅ 𝐵 ) = Σ 𝑘 ∈ ∅ ( vol ‘ 𝐵 ) ) |
| 43 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 44 | ssralv | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) → ∀ 𝑘 ∈ 𝑦 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) ) | |
| 45 | 43 44 | ax-mp | ⊢ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) → ∀ 𝑘 ∈ 𝑦 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) |
| 46 | disjss1 | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → Disj 𝑘 ∈ 𝑦 𝐵 ) ) | |
| 47 | 43 46 | ax-mp | ⊢ ( Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 → Disj 𝑘 ∈ 𝑦 𝐵 ) |
| 48 | 45 47 | anim12i | ⊢ ( ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → ( ∀ 𝑘 ∈ 𝑦 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝑦 𝐵 ) ) |
| 49 | 48 | imim1i | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑦 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝑦 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) = Σ 𝑘 ∈ 𝑦 ( vol ‘ 𝐵 ) ) → ( ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) = Σ 𝑘 ∈ 𝑦 ( vol ‘ 𝐵 ) ) ) |
| 50 | oveq1 | ⊢ ( ( vol ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = Σ 𝑚 ∈ 𝑦 ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) → ( ( vol ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( Σ 𝑚 ∈ 𝑦 ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) | |
| 51 | iunxun | ⊢ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∪ ∪ 𝑚 ∈ { 𝑧 } ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) | |
| 52 | vex | ⊢ 𝑧 ∈ V | |
| 53 | csbeq1 | ⊢ ( 𝑚 = 𝑧 → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) | |
| 54 | 52 53 | iunxsn | ⊢ ∪ 𝑚 ∈ { 𝑧 } ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
| 55 | 54 | uneq2i | ⊢ ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∪ ∪ 𝑚 ∈ { 𝑧 } ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∪ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 56 | 51 55 | eqtri | ⊢ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∪ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 57 | 56 | fveq2i | ⊢ ( vol ‘ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( vol ‘ ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∪ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 58 | nfcv | ⊢ Ⅎ 𝑚 𝐵 | |
| 59 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 | |
| 60 | csbeq1a | ⊢ ( 𝑘 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) | |
| 61 | 58 59 60 | cbviun | ⊢ ∪ 𝑘 ∈ 𝑦 𝐵 = ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 |
| 62 | simpll | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → 𝑦 ∈ Fin ) | |
| 63 | simprl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ) | |
| 64 | simpl | ⊢ ( ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) → 𝐵 ∈ dom vol ) | |
| 65 | 64 | ralimi | ⊢ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) → ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom vol ) |
| 66 | 63 65 | syl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom vol ) |
| 67 | ssralv | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ∈ dom vol → ∀ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ) ) | |
| 68 | 43 66 67 | mpsyl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ∀ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ) |
| 69 | finiunmbl | ⊢ ( ( 𝑦 ∈ Fin ∧ ∀ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ) → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ) | |
| 70 | 62 68 69 | syl2anc | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ) |
| 71 | 61 70 | eqeltrrid | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol ) |
| 72 | ssun2 | ⊢ { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 73 | vsnid | ⊢ 𝑧 ∈ { 𝑧 } | |
| 74 | 72 73 | sselii | ⊢ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) |
| 75 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 | |
| 76 | 75 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ dom vol |
| 77 | nfcv | ⊢ Ⅎ 𝑘 vol | |
| 78 | 77 75 | nffv | ⊢ Ⅎ 𝑘 ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 79 | 78 | nfel1 | ⊢ Ⅎ 𝑘 ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ |
| 80 | 76 79 | nfan | ⊢ Ⅎ 𝑘 ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 81 | csbeq1a | ⊢ ( 𝑘 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) | |
| 82 | 81 | eleq1d | ⊢ ( 𝑘 = 𝑧 → ( 𝐵 ∈ dom vol ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ dom vol ) ) |
| 83 | 81 | fveq2d | ⊢ ( 𝑘 = 𝑧 → ( vol ‘ 𝐵 ) = ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 84 | 83 | eleq1d | ⊢ ( 𝑘 = 𝑧 → ( ( vol ‘ 𝐵 ) ∈ ℝ ↔ ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 85 | 82 84 | anbi12d | ⊢ ( 𝑘 = 𝑧 → ( ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ↔ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) ) |
| 86 | 80 85 | rspc | ⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) ) |
| 87 | 74 63 86 | mpsyl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 88 | 87 | simpld | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ dom vol ) |
| 89 | simplr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 90 | elin | ⊢ ( 𝑤 ∈ ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ↔ ( 𝑤 ∈ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) | |
| 91 | eliun | ⊢ ( 𝑤 ∈ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ↔ ∃ 𝑚 ∈ 𝑦 𝑤 ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) | |
| 92 | simplrr | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ ( 𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) → Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) | |
| 93 | nfcv | ⊢ Ⅎ 𝑛 𝐵 | |
| 94 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝐵 | |
| 95 | csbeq1a | ⊢ ( 𝑘 = 𝑛 → 𝐵 = ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) | |
| 96 | 93 94 95 | cbvdisj | ⊢ ( Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ↔ Disj 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) |
| 97 | 92 96 | sylib | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ ( 𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) → Disj 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ) |
| 98 | simpr1 | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ ( 𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) → 𝑚 ∈ 𝑦 ) | |
| 99 | elun1 | ⊢ ( 𝑚 ∈ 𝑦 → 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) | |
| 100 | 98 99 | syl | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ ( 𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) → 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 101 | 74 | a1i | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ ( 𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
| 102 | simpr2 | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ ( 𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) → 𝑤 ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) | |
| 103 | simpr3 | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ ( 𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) → 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) | |
| 104 | csbeq1 | ⊢ ( 𝑛 = 𝑚 → ⦋ 𝑛 / 𝑘 ⦌ 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) | |
| 105 | csbeq1 | ⊢ ( 𝑛 = 𝑧 → ⦋ 𝑛 / 𝑘 ⦌ 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) | |
| 106 | 104 105 | disji | ⊢ ( ( Disj 𝑛 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑛 / 𝑘 ⦌ 𝐵 ∧ ( 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ∧ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) ∧ ( 𝑤 ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) → 𝑚 = 𝑧 ) |
| 107 | 97 100 101 102 103 106 | syl122anc | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ ( 𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) → 𝑚 = 𝑧 ) |
| 108 | 107 98 | eqeltrrd | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ ( 𝑚 ∈ 𝑦 ∧ 𝑤 ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) → 𝑧 ∈ 𝑦 ) |
| 109 | 108 | 3exp2 | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( 𝑚 ∈ 𝑦 → ( 𝑤 ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 → ( 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 → 𝑧 ∈ 𝑦 ) ) ) ) |
| 110 | 109 | rexlimdv | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( ∃ 𝑚 ∈ 𝑦 𝑤 ∈ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 → ( 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 → 𝑧 ∈ 𝑦 ) ) ) |
| 111 | 91 110 | biimtrid | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( 𝑤 ∈ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 → ( 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 → 𝑧 ∈ 𝑦 ) ) ) |
| 112 | 111 | impd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( ( 𝑤 ∈ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∧ 𝑤 ∈ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) → 𝑧 ∈ 𝑦 ) ) |
| 113 | 90 112 | biimtrid | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( 𝑤 ∈ ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) → 𝑧 ∈ 𝑦 ) ) |
| 114 | 89 113 | mtod | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ¬ 𝑤 ∈ ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 115 | 114 | eq0rdv | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) = ∅ ) |
| 116 | mblvol | ⊢ ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol → ( vol ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) | |
| 117 | 71 116 | syl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( vol ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 118 | nfv | ⊢ Ⅎ 𝑚 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) | |
| 119 | 59 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol |
| 120 | 77 59 | nffv | ⊢ Ⅎ 𝑘 ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 121 | 120 | nfel1 | ⊢ Ⅎ 𝑘 ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ |
| 122 | 119 121 | nfan | ⊢ Ⅎ 𝑘 ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 123 | 60 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( 𝐵 ∈ dom vol ↔ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol ) ) |
| 124 | 60 | fveq2d | ⊢ ( 𝑘 = 𝑚 → ( vol ‘ 𝐵 ) = ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 125 | 124 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( ( vol ‘ 𝐵 ) ∈ ℝ ↔ ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 126 | 123 125 | anbi12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ↔ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) ) |
| 127 | 118 122 126 | cbvralw | ⊢ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 128 | 63 127 | sylib | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 129 | 128 | r19.21bi | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 130 | 129 | simpld | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol ) |
| 131 | mblss | ⊢ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ) | |
| 132 | 130 131 | syl | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ) |
| 133 | 99 132 | sylan2 | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ 𝑚 ∈ 𝑦 ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ) |
| 134 | 133 | ralrimiva | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ∀ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ) |
| 135 | iunss | ⊢ ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ↔ ∀ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ) | |
| 136 | 134 135 | sylibr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ) |
| 137 | mblvol | ⊢ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol → ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) | |
| 138 | 137 | eleq1d | ⊢ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol → ( ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ↔ ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 139 | 138 | biimpa | ⊢ ( ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 140 | 129 139 | syl | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 141 | 99 140 | sylan2 | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ 𝑚 ∈ 𝑦 ) → ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 142 | 62 141 | fsumrecl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 143 | 131 | adantr | ⊢ ( ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ) |
| 144 | 143 139 | jca | ⊢ ( ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) → ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 145 | 144 | ralimi | ⊢ ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) → ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 146 | 128 145 | syl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 147 | ssralv | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) → ∀ 𝑚 ∈ 𝑦 ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) ) | |
| 148 | 43 146 147 | mpsyl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ∀ 𝑚 ∈ 𝑦 ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 149 | ovolfiniun | ⊢ ( ( 𝑦 ∈ Fin ∧ ∀ 𝑚 ∈ 𝑦 ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ≤ Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) | |
| 150 | 62 148 149 | syl2anc | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ≤ Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 151 | ovollecl | ⊢ ( ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ∧ ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ≤ Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) → ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) | |
| 152 | 136 142 150 151 | syl3anc | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 153 | 117 152 | eqeltrd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( vol ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 154 | 87 | simprd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 155 | volun | ⊢ ( ( ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ dom vol ∧ ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∩ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) = ∅ ) ∧ ( ( vol ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ∧ ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) → ( vol ‘ ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∪ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( ( vol ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) | |
| 156 | 71 88 115 153 154 155 | syl32anc | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( vol ‘ ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∪ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( ( vol ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 157 | 57 156 | eqtrid | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( vol ‘ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( ( vol ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 158 | disjsn | ⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) | |
| 159 | 89 158 | sylibr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 160 | eqidd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) | |
| 161 | snfi | ⊢ { 𝑧 } ∈ Fin | |
| 162 | unfi | ⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) | |
| 163 | 62 161 162 | sylancl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 164 | 129 | simprd | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 165 | 164 | recnd | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) ∧ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℂ ) |
| 166 | 159 160 163 165 | fsumsplit | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( Σ 𝑚 ∈ 𝑦 ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + Σ 𝑚 ∈ { 𝑧 } ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
| 167 | 154 | recnd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℂ ) |
| 168 | 53 | fveq2d | ⊢ ( 𝑚 = 𝑧 → ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 169 | 168 | sumsn | ⊢ ( ( 𝑧 ∈ V ∧ ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℂ ) → Σ 𝑚 ∈ { 𝑧 } ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 170 | 52 167 169 | sylancr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → Σ 𝑚 ∈ { 𝑧 } ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 171 | 170 | oveq2d | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( Σ 𝑚 ∈ 𝑦 ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + Σ 𝑚 ∈ { 𝑧 } ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) = ( Σ 𝑚 ∈ 𝑦 ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 172 | 166 171 | eqtrd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( Σ 𝑚 ∈ 𝑦 ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 173 | 157 172 | eqeq12d | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( ( vol ‘ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ↔ ( ( vol ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) = ( Σ 𝑚 ∈ 𝑦 ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) ) |
| 174 | 50 173 | imbitrrid | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( ( vol ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = Σ 𝑚 ∈ 𝑦 ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) → ( vol ‘ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
| 175 | 61 | fveq2i | ⊢ ( vol ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) = ( vol ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 176 | nfcv | ⊢ Ⅎ 𝑚 ( vol ‘ 𝐵 ) | |
| 177 | 124 176 120 | cbvsum | ⊢ Σ 𝑘 ∈ 𝑦 ( vol ‘ 𝐵 ) = Σ 𝑚 ∈ 𝑦 ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 178 | 175 177 | eqeq12i | ⊢ ( ( vol ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) = Σ 𝑘 ∈ 𝑦 ( vol ‘ 𝐵 ) ↔ ( vol ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = Σ 𝑚 ∈ 𝑦 ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 179 | 58 59 60 | cbviun | ⊢ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 |
| 180 | 179 | fveq2i | ⊢ ( vol ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( vol ‘ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 181 | 124 176 120 | cbvsum | ⊢ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ 𝐵 ) = Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 182 | 180 181 | eqeq12i | ⊢ ( ( vol ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ 𝐵 ) ↔ ( vol ‘ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 183 | 174 178 182 | 3imtr4g | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) → ( ( vol ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) = Σ 𝑘 ∈ 𝑦 ( vol ‘ 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ 𝐵 ) ) ) |
| 184 | 183 | ex | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → ( ( vol ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) = Σ 𝑘 ∈ 𝑦 ( vol ‘ 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ 𝐵 ) ) ) ) |
| 185 | 184 | a2d | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) = Σ 𝑘 ∈ 𝑦 ( vol ‘ 𝐵 ) ) → ( ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ 𝐵 ) ) ) ) |
| 186 | 49 185 | syl5 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( ∀ 𝑘 ∈ 𝑦 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝑦 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) = Σ 𝑘 ∈ 𝑦 ( vol ‘ 𝐵 ) ) → ( ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol ‘ 𝐵 ) ) ) ) |
| 187 | 8 16 24 32 42 186 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( ( ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝐴 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( vol ‘ 𝐵 ) ) ) |
| 188 | 187 | 3impib | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐵 ∈ dom vol ∧ ( vol ‘ 𝐵 ) ∈ ℝ ) ∧ Disj 𝑘 ∈ 𝐴 𝐵 ) → ( vol ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( vol ‘ 𝐵 ) ) |