This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for intersection over union. Exercise 10 of TakeutiZaring p. 17. (Contributed by NM, 30-Sep-2002) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | indi | ⊢ ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | andi | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∨ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) ) | |
| 2 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ) | |
| 3 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) | |
| 4 | 2 3 | orbi12i | ⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∨ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 ) ∨ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶 ) ) ) |
| 5 | 1 4 | bitr4i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∨ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ) ) |
| 6 | elun | ⊢ ( 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) | |
| 7 | 6 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ ( 𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶 ) ) ) |
| 8 | elun | ⊢ ( 𝑥 ∈ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ∨ 𝑥 ∈ ( 𝐴 ∩ 𝐶 ) ) ) | |
| 9 | 5 7 8 | 3bitr4i | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ( 𝐵 ∪ 𝐶 ) ) ↔ 𝑥 ∈ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) ) |
| 10 | 9 | ineqri | ⊢ ( 𝐴 ∩ ( 𝐵 ∪ 𝐶 ) ) = ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∩ 𝐶 ) ) |