This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set ( 1 ... N ) has N elements. (Contributed by Paul Chapman, 22-Jun-2011) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashfz1 | ⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 2 | 1 | cardfz | ⊢ ( 𝑁 ∈ ℕ0 → ( card ‘ ( 1 ... 𝑁 ) ) = ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ 𝑁 ) ) |
| 3 | 2 | fveq2d | ⊢ ( 𝑁 ∈ ℕ0 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( 1 ... 𝑁 ) ) ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ 𝑁 ) ) ) |
| 4 | fzfid | ⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) ∈ Fin ) | |
| 5 | 1 | hashgval | ⊢ ( ( 1 ... 𝑁 ) ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( 1 ... 𝑁 ) ) ) = ( ♯ ‘ ( 1 ... 𝑁 ) ) ) |
| 6 | 4 5 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( 1 ... 𝑁 ) ) ) = ( ♯ ‘ ( 1 ... 𝑁 ) ) ) |
| 7 | 1 | hashgf1o | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω –1-1-onto→ ℕ0 |
| 8 | f1ocnvfv2 | ⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) : ω –1-1-onto→ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ 𝑁 ) ) = 𝑁 ) | |
| 9 | 7 8 | mpan | ⊢ ( 𝑁 ∈ ℕ0 → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( ◡ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ 𝑁 ) ) = 𝑁 ) |
| 10 | 3 6 9 | 3eqtr3d | ⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |