This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite union of measurable sets is measurable. (Contributed by Mario Carneiro, 20-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | finiunmbl | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol ) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq | ⊢ ( 𝑦 = ∅ → ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∀ 𝑘 ∈ ∅ 𝐵 ∈ dom vol ) ) | |
| 2 | iuneq1 | ⊢ ( 𝑦 = ∅ → ∪ 𝑘 ∈ 𝑦 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵 ) | |
| 3 | 2 | eleq1d | ⊢ ( 𝑦 = ∅ → ( ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ ∅ 𝐵 ∈ dom vol ) ) |
| 4 | 1 3 | imbi12d | ⊢ ( 𝑦 = ∅ → ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ) ↔ ( ∀ 𝑘 ∈ ∅ 𝐵 ∈ dom vol → ∪ 𝑘 ∈ ∅ 𝐵 ∈ dom vol ) ) ) |
| 5 | raleq | ⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∀ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ) ) | |
| 6 | iuneq1 | ⊢ ( 𝑦 = 𝑥 → ∪ 𝑘 ∈ 𝑦 𝐵 = ∪ 𝑘 ∈ 𝑥 𝐵 ) | |
| 7 | 6 | eleq1d | ⊢ ( 𝑦 = 𝑥 → ( ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ) ) |
| 8 | 5 7 | imbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ) ↔ ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ) ) ) |
| 9 | raleq | ⊢ ( 𝑦 = ( 𝑥 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∀ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol ) ) | |
| 10 | iuneq1 | ⊢ ( 𝑦 = ( 𝑥 ∪ { 𝑧 } ) → ∪ 𝑘 ∈ 𝑦 𝐵 = ∪ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑦 = ( 𝑥 ∪ { 𝑧 } ) → ( ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol ) ) |
| 12 | 9 11 | imbi12d | ⊢ ( 𝑦 = ( 𝑥 ∪ { 𝑧 } ) → ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ) ↔ ( ∀ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol → ∪ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol ) ) ) |
| 13 | raleq | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol ) ) | |
| 14 | iuneq1 | ⊢ ( 𝑦 = 𝐴 → ∪ 𝑘 ∈ 𝑦 𝐵 = ∪ 𝑘 ∈ 𝐴 𝐵 ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝑦 = 𝐴 → ( ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol ) ) |
| 16 | 13 15 | imbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ∀ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑦 𝐵 ∈ dom vol ) ↔ ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol ) ) ) |
| 17 | 0iun | ⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ | |
| 18 | 0mbl | ⊢ ∅ ∈ dom vol | |
| 19 | 17 18 | eqeltri | ⊢ ∪ 𝑘 ∈ ∅ 𝐵 ∈ dom vol |
| 20 | 19 | a1i | ⊢ ( ∀ 𝑘 ∈ ∅ 𝐵 ∈ dom vol → ∪ 𝑘 ∈ ∅ 𝐵 ∈ dom vol ) |
| 21 | ssun1 | ⊢ 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) | |
| 22 | ssralv | ⊢ ( 𝑥 ⊆ ( 𝑥 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol → ∀ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ) ) | |
| 23 | 21 22 | ax-mp | ⊢ ( ∀ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol → ∀ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ) |
| 24 | 23 | imim1i | ⊢ ( ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ) → ( ∀ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ) ) |
| 25 | ssun2 | ⊢ { 𝑧 } ⊆ ( 𝑥 ∪ { 𝑧 } ) | |
| 26 | ssralv | ⊢ ( { 𝑧 } ⊆ ( 𝑥 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol → ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ dom vol ) ) | |
| 27 | 25 26 | ax-mp | ⊢ ( ∀ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol → ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ dom vol ) |
| 28 | iunxun | ⊢ ∪ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 = ( ∪ 𝑘 ∈ 𝑥 𝐵 ∪ ∪ 𝑘 ∈ { 𝑧 } 𝐵 ) | |
| 29 | vex | ⊢ 𝑧 ∈ V | |
| 30 | csbeq1 | ⊢ ( 𝑥 = 𝑧 → ⦋ 𝑥 / 𝑘 ⦌ 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) | |
| 31 | 30 | eleq1d | ⊢ ( 𝑥 = 𝑧 → ( ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ dom vol ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ dom vol ) ) |
| 32 | 29 31 | ralsn | ⊢ ( ∀ 𝑥 ∈ { 𝑧 } ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ dom vol ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ dom vol ) |
| 33 | nfv | ⊢ Ⅎ 𝑥 𝐵 ∈ dom vol | |
| 34 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐵 | |
| 35 | 34 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ dom vol |
| 36 | csbeq1a | ⊢ ( 𝑘 = 𝑥 → 𝐵 = ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ) | |
| 37 | 36 | eleq1d | ⊢ ( 𝑘 = 𝑥 → ( 𝐵 ∈ dom vol ↔ ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ dom vol ) ) |
| 38 | 33 35 37 | cbvralw | ⊢ ( ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ dom vol ↔ ∀ 𝑥 ∈ { 𝑧 } ⦋ 𝑥 / 𝑘 ⦌ 𝐵 ∈ dom vol ) |
| 39 | nfcv | ⊢ Ⅎ 𝑥 𝐵 | |
| 40 | 39 34 36 | cbviun | ⊢ ∪ 𝑘 ∈ { 𝑧 } 𝐵 = ∪ 𝑥 ∈ { 𝑧 } ⦋ 𝑥 / 𝑘 ⦌ 𝐵 |
| 41 | 29 30 | iunxsn | ⊢ ∪ 𝑥 ∈ { 𝑧 } ⦋ 𝑥 / 𝑘 ⦌ 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
| 42 | 40 41 | eqtri | ⊢ ∪ 𝑘 ∈ { 𝑧 } 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
| 43 | 42 | eleq1i | ⊢ ( ∪ 𝑘 ∈ { 𝑧 } 𝐵 ∈ dom vol ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ∈ dom vol ) |
| 44 | 32 38 43 | 3bitr4i | ⊢ ( ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ dom vol ↔ ∪ 𝑘 ∈ { 𝑧 } 𝐵 ∈ dom vol ) |
| 45 | unmbl | ⊢ ( ( ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ∧ ∪ 𝑘 ∈ { 𝑧 } 𝐵 ∈ dom vol ) → ( ∪ 𝑘 ∈ 𝑥 𝐵 ∪ ∪ 𝑘 ∈ { 𝑧 } 𝐵 ) ∈ dom vol ) | |
| 46 | 44 45 | sylan2b | ⊢ ( ( ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ dom vol ) → ( ∪ 𝑘 ∈ 𝑥 𝐵 ∪ ∪ 𝑘 ∈ { 𝑧 } 𝐵 ) ∈ dom vol ) |
| 47 | 28 46 | eqeltrid | ⊢ ( ( ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ∧ ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ dom vol ) → ∪ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol ) |
| 48 | 47 | expcom | ⊢ ( ∀ 𝑘 ∈ { 𝑧 } 𝐵 ∈ dom vol → ( ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol ) ) |
| 49 | 27 48 | syl | ⊢ ( ∀ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol → ( ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol ) ) |
| 50 | 24 49 | sylcom | ⊢ ( ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ) → ( ∀ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol → ∪ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol ) ) |
| 51 | 50 | a1i | ⊢ ( 𝑥 ∈ Fin → ( ( ∀ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝑥 𝐵 ∈ dom vol ) → ( ∀ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol → ∪ 𝑘 ∈ ( 𝑥 ∪ { 𝑧 } ) 𝐵 ∈ dom vol ) ) ) |
| 52 | 4 8 12 16 20 51 | findcard2 | ⊢ ( 𝐴 ∈ Fin → ( ∀ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol ) ) |
| 53 | 52 | imp | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol ) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol ) |