This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The defining property of measurability. (Contributed by Mario Carneiro, 17-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mblsplit | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝐵 ) = ( ( vol* ‘ ( 𝐵 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex | ⊢ ℝ ∈ V | |
| 2 | 1 | elpw2 | ⊢ ( 𝐵 ∈ 𝒫 ℝ ↔ 𝐵 ⊆ ℝ ) |
| 3 | ismbl | ⊢ ( 𝐴 ∈ dom vol ↔ ( 𝐴 ⊆ ℝ ∧ ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ) ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( vol* ‘ 𝑥 ) = ( vol* ‘ 𝐵 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( vol* ‘ 𝑥 ) ∈ ℝ ↔ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) |
| 6 | ineq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∩ 𝐴 ) = ( 𝐵 ∩ 𝐴 ) ) | |
| 7 | 6 | fveq2d | ⊢ ( 𝑥 = 𝐵 → ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) = ( vol* ‘ ( 𝐵 ∩ 𝐴 ) ) ) |
| 8 | difeq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ∖ 𝐴 ) = ( 𝐵 ∖ 𝐴 ) ) | |
| 9 | 8 | fveq2d | ⊢ ( 𝑥 = 𝐵 → ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) = ( vol* ‘ ( 𝐵 ∖ 𝐴 ) ) ) |
| 10 | 7 9 | oveq12d | ⊢ ( 𝑥 = 𝐵 → ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) = ( ( vol* ‘ ( 𝐵 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 11 | 4 10 | eqeq12d | ⊢ ( 𝑥 = 𝐵 → ( ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ↔ ( vol* ‘ 𝐵 ) = ( ( vol* ‘ ( 𝐵 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) ) |
| 12 | 5 11 | imbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) ↔ ( ( vol* ‘ 𝐵 ) ∈ ℝ → ( vol* ‘ 𝐵 ) = ( ( vol* ‘ ( 𝐵 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) ) ) |
| 13 | 12 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝒫 ℝ ( ( vol* ‘ 𝑥 ) ∈ ℝ → ( vol* ‘ 𝑥 ) = ( ( vol* ‘ ( 𝑥 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝑥 ∖ 𝐴 ) ) ) ) → ( 𝐵 ∈ 𝒫 ℝ → ( ( vol* ‘ 𝐵 ) ∈ ℝ → ( vol* ‘ 𝐵 ) = ( ( vol* ‘ ( 𝐵 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) ) ) |
| 14 | 3 13 | simplbiim | ⊢ ( 𝐴 ∈ dom vol → ( 𝐵 ∈ 𝒫 ℝ → ( ( vol* ‘ 𝐵 ) ∈ ℝ → ( vol* ‘ 𝐵 ) = ( ( vol* ‘ ( 𝐵 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) ) ) |
| 15 | 2 14 | biimtrrid | ⊢ ( 𝐴 ∈ dom vol → ( 𝐵 ⊆ ℝ → ( ( vol* ‘ 𝐵 ) ∈ ℝ → ( vol* ‘ 𝐵 ) = ( ( vol* ‘ ( 𝐵 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) ) ) |
| 16 | 15 | 3imp | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ 𝐵 ) = ( ( vol* ‘ ( 𝐵 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |