This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The measure of an open interval. (Contributed by Mario Carneiro, 2-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolioo | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioombl | ⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol | |
| 2 | mblvol | ⊢ ( ( 𝐴 (,) 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) |
| 4 | iccmbl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ∈ dom vol ) | |
| 5 | mblvol | ⊢ ( ( 𝐴 [,] 𝐵 ) ∈ dom vol → ( vol ‘ ( 𝐴 [,] 𝐵 ) ) = ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,] 𝐵 ) ) = ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 7 | 6 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 [,] 𝐵 ) ) = ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 8 | 1 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 9 | prssi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → { 𝐴 , 𝐵 } ⊆ ℝ ) | |
| 10 | 9 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → { 𝐴 , 𝐵 } ⊆ ℝ ) |
| 11 | prfi | ⊢ { 𝐴 , 𝐵 } ∈ Fin | |
| 12 | ovolfi | ⊢ ( ( { 𝐴 , 𝐵 } ∈ Fin ∧ { 𝐴 , 𝐵 } ⊆ ℝ ) → ( vol* ‘ { 𝐴 , 𝐵 } ) = 0 ) | |
| 13 | 11 10 12 | sylancr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ { 𝐴 , 𝐵 } ) = 0 ) |
| 14 | nulmbl | ⊢ ( ( { 𝐴 , 𝐵 } ⊆ ℝ ∧ ( vol* ‘ { 𝐴 , 𝐵 } ) = 0 ) → { 𝐴 , 𝐵 } ∈ dom vol ) | |
| 15 | 10 13 14 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → { 𝐴 , 𝐵 } ∈ dom vol ) |
| 16 | df-pr | ⊢ { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } ) | |
| 17 | 16 | ineq2i | ⊢ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ( ( 𝐴 (,) 𝐵 ) ∩ ( { 𝐴 } ∪ { 𝐵 } ) ) |
| 18 | indi | ⊢ ( ( 𝐴 (,) 𝐵 ) ∩ ( { 𝐴 } ∪ { 𝐵 } ) ) = ( ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 } ) ∪ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐵 } ) ) | |
| 19 | 17 18 | eqtri | ⊢ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ( ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 } ) ∪ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐵 } ) ) |
| 20 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) | |
| 21 | 20 | ltnrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ¬ 𝐴 < 𝐴 ) |
| 22 | eliooord | ⊢ ( 𝐴 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝐴 ∧ 𝐴 < 𝐵 ) ) | |
| 23 | 22 | simpld | ⊢ ( 𝐴 ∈ ( 𝐴 (,) 𝐵 ) → 𝐴 < 𝐴 ) |
| 24 | 21 23 | nsyl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ¬ 𝐴 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 25 | disjsn | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 26 | 24 25 | sylibr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 } ) = ∅ ) |
| 27 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 28 | 27 | ltnrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ¬ 𝐵 < 𝐵 ) |
| 29 | eliooord | ⊢ ( 𝐵 ∈ ( 𝐴 (,) 𝐵 ) → ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐵 ) ) | |
| 30 | 29 | simprd | ⊢ ( 𝐵 ∈ ( 𝐴 (,) 𝐵 ) → 𝐵 < 𝐵 ) |
| 31 | 28 30 | nsyl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ¬ 𝐵 ∈ ( 𝐴 (,) 𝐵 ) ) |
| 32 | disjsn | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ ( 𝐴 (,) 𝐵 ) ) | |
| 33 | 31 32 | sylibr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐵 } ) = ∅ ) |
| 34 | 26 33 | uneq12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 } ) ∪ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐵 } ) ) = ( ∅ ∪ ∅ ) ) |
| 35 | un0 | ⊢ ( ∅ ∪ ∅ ) = ∅ | |
| 36 | 34 35 | eqtrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 } ) ∪ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐵 } ) ) = ∅ ) |
| 37 | 19 36 | eqtrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ∅ ) |
| 38 | ioossicc | ⊢ ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) | |
| 39 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 40 | 39 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 41 | ovolicc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) | |
| 42 | 27 20 | resubcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 43 | 41 42 | eqeltrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ ) |
| 44 | ovolsscl | ⊢ ( ( ( 𝐴 (,) 𝐵 ) ⊆ ( 𝐴 [,] 𝐵 ) ∧ ( 𝐴 [,] 𝐵 ) ⊆ ℝ ∧ ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ ) → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) | |
| 45 | 38 40 43 44 | mp3an2i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
| 46 | 3 45 | eqeltrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ) |
| 47 | mblvol | ⊢ ( { 𝐴 , 𝐵 } ∈ dom vol → ( vol ‘ { 𝐴 , 𝐵 } ) = ( vol* ‘ { 𝐴 , 𝐵 } ) ) | |
| 48 | 15 47 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ { 𝐴 , 𝐵 } ) = ( vol* ‘ { 𝐴 , 𝐵 } ) ) |
| 49 | 48 13 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ { 𝐴 , 𝐵 } ) = 0 ) |
| 50 | 0re | ⊢ 0 ∈ ℝ | |
| 51 | 49 50 | eqeltrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ { 𝐴 , 𝐵 } ) ∈ ℝ ) |
| 52 | volun | ⊢ ( ( ( ( 𝐴 (,) 𝐵 ) ∈ dom vol ∧ { 𝐴 , 𝐵 } ∈ dom vol ∧ ( ( 𝐴 (,) 𝐵 ) ∩ { 𝐴 , 𝐵 } ) = ∅ ) ∧ ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℝ ∧ ( vol ‘ { 𝐴 , 𝐵 } ) ∈ ℝ ) ) → ( vol ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ) = ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐴 , 𝐵 } ) ) ) | |
| 53 | 8 15 37 46 51 52 | syl32anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ) = ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐴 , 𝐵 } ) ) ) |
| 54 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 55 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 56 | id | ⊢ ( 𝐴 ≤ 𝐵 → 𝐴 ≤ 𝐵 ) | |
| 57 | prunioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) | |
| 58 | 54 55 56 57 | syl3an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) = ( 𝐴 [,] 𝐵 ) ) |
| 59 | 58 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( ( 𝐴 (,) 𝐵 ) ∪ { 𝐴 , 𝐵 } ) ) = ( vol ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 60 | 49 | oveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐴 , 𝐵 } ) ) = ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + 0 ) ) |
| 61 | 46 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ∈ ℂ ) |
| 62 | 61 | addridd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + 0 ) = ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 63 | 60 62 | eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( vol ‘ ( 𝐴 (,) 𝐵 ) ) + ( vol ‘ { 𝐴 , 𝐵 } ) ) = ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 64 | 53 59 63 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 [,] 𝐵 ) ) = ( vol ‘ ( 𝐴 (,) 𝐵 ) ) ) |
| 65 | 7 64 41 | 3eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| 66 | 3 65 | eqtr3id | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 (,) 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |