This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Separate a union in the index of an indexed union. (Contributed by NM, 26-Mar-2004) (Proof shortened by Mario Carneiro, 17-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunxun | ⊢ ∪ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 = ( ∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexun | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝑦 ∈ 𝐶 ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ∨ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) ) | |
| 2 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) | |
| 3 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) | |
| 4 | 2 3 | orbi12i | ⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ∨ ∃ 𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 ) ) |
| 5 | 1 4 | bitr4i | ⊢ ( ∃ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝑦 ∈ 𝐶 ↔ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ) ) |
| 6 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ↔ ∃ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝑦 ∈ 𝐶 ) | |
| 7 | elun | ⊢ ( 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶 ) ↔ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ∨ 𝑦 ∈ ∪ 𝑥 ∈ 𝐵 𝐶 ) ) | |
| 8 | 5 6 7 | 3bitr4i | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 ↔ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶 ) ) |
| 9 | 8 | eqriv | ⊢ ∪ 𝑥 ∈ ( 𝐴 ∪ 𝐵 ) 𝐶 = ( ∪ 𝑥 ∈ 𝐴 𝐶 ∪ ∪ 𝑥 ∈ 𝐵 𝐶 ) |