This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for two sets of upper integers. (Contributed by NM, 5-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzss | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzle | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ℤ ) → 𝑀 ≤ 𝑁 ) |
| 3 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 4 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 5 | 3 4 | jca | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 6 | zletr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘 ) → 𝑀 ≤ 𝑘 ) ) | |
| 7 | 6 | 3expa | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘 ) → 𝑀 ≤ 𝑘 ) ) |
| 8 | 5 7 | sylan | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘 ) → 𝑀 ≤ 𝑘 ) ) |
| 9 | 2 8 | mpand | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑁 ≤ 𝑘 → 𝑀 ≤ 𝑘 ) ) |
| 10 | 9 | imdistanda | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) → ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) ) |
| 11 | eluz1 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) ) ) | |
| 12 | 4 11 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) ) ) |
| 13 | eluz1 | ⊢ ( 𝑀 ∈ ℤ → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) ) | |
| 14 | 3 13 | syl | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) ) |
| 15 | 10 12 14 | 3imtr4d | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 16 | 15 | ssrdv | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |