This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed union of intersection. Generalization of half of theorem "Distributive laws" in Enderton p. 30. Use uniiun to recover Enderton's theorem. (Contributed by NM, 26-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iunin2 | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.42v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) | |
| 2 | elin | ⊢ ( 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) | |
| 3 | 2 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶 ) ) |
| 4 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) | |
| 5 | 4 | anbi2i | ⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) |
| 6 | 1 3 5 | 3bitr4i | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 7 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ ( 𝐵 ∩ 𝐶 ) ) | |
| 8 | elin | ⊢ ( 𝑦 ∈ ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) | |
| 9 | 6 7 8 | 3bitr4i | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) ↔ 𝑦 ∈ ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
| 10 | 9 | eqriv | ⊢ ∪ 𝑥 ∈ 𝐴 ( 𝐵 ∩ 𝐶 ) = ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 𝐶 ) |