This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 25-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | ||
| uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | ||
| uniioombl.a | ⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) | ||
| uniioombl.e | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | ||
| uniioombl.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| uniioombl.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | ||
| uniioombl.s | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | ||
| uniioombl.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | ||
| uniioombl.v | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | ||
| uniioombl.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | ||
| uniioombl.m2 | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑇 ‘ 𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) | ||
| uniioombl.k | ⊢ 𝐾 = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) | ||
| uniioombl.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | ||
| uniioombl.n2 | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑀 ) ) | ||
| uniioombl.l | ⊢ 𝐿 = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) | ||
| Assertion | uniioombllem5 | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 2 | uniioombl.2 | ⊢ ( 𝜑 → Disj 𝑥 ∈ ℕ ( (,) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 3 | uniioombl.3 | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐹 ) ) | |
| 4 | uniioombl.a | ⊢ 𝐴 = ∪ ran ( (,) ∘ 𝐹 ) | |
| 5 | uniioombl.e | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℝ ) | |
| 6 | uniioombl.c | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 7 | uniioombl.g | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 8 | uniioombl.s | ⊢ ( 𝜑 → 𝐸 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) | |
| 9 | uniioombl.t | ⊢ 𝑇 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐺 ) ) | |
| 10 | uniioombl.v | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) | |
| 11 | uniioombl.m | ⊢ ( 𝜑 → 𝑀 ∈ ℕ ) | |
| 12 | uniioombl.m2 | ⊢ ( 𝜑 → ( abs ‘ ( ( 𝑇 ‘ 𝑀 ) − sup ( ran 𝑇 , ℝ* , < ) ) ) < 𝐶 ) | |
| 13 | uniioombl.k | ⊢ 𝐾 = ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) | |
| 14 | uniioombl.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ ) | |
| 15 | uniioombl.n2 | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 1 ... 𝑀 ) ( abs ‘ ( Σ 𝑖 ∈ ( 1 ... 𝑁 ) ( vol* ‘ ( ( (,) ‘ ( 𝐹 ‘ 𝑖 ) ) ∩ ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ) ) − ( vol* ‘ ( ( (,) ‘ ( 𝐺 ‘ 𝑗 ) ) ∩ 𝐴 ) ) ) ) < ( 𝐶 / 𝑀 ) ) | |
| 16 | uniioombl.l | ⊢ 𝐿 = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) | |
| 17 | inss1 | ⊢ ( 𝐸 ∩ 𝐴 ) ⊆ 𝐸 | |
| 18 | 7 | uniiccdif | ⊢ ( 𝜑 → ( ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ∧ ( vol* ‘ ( ∪ ran ( [,] ∘ 𝐺 ) ∖ ∪ ran ( (,) ∘ 𝐺 ) ) ) = 0 ) ) |
| 19 | 18 | simpld | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( [,] ∘ 𝐺 ) ) |
| 20 | ovolficcss | ⊢ ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ∪ ran ( [,] ∘ 𝐺 ) ⊆ ℝ ) | |
| 21 | 7 20 | syl | ⊢ ( 𝜑 → ∪ ran ( [,] ∘ 𝐺 ) ⊆ ℝ ) |
| 22 | 19 21 | sstrd | ⊢ ( 𝜑 → ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ) |
| 23 | 8 22 | sstrd | ⊢ ( 𝜑 → 𝐸 ⊆ ℝ ) |
| 24 | ovolsscl | ⊢ ( ( ( 𝐸 ∩ 𝐴 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ℝ ) | |
| 25 | 17 23 5 24 | mp3an2i | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) ∈ ℝ ) |
| 26 | difssd | ⊢ ( 𝜑 → ( 𝐸 ∖ 𝐴 ) ⊆ 𝐸 ) | |
| 27 | ovolsscl | ⊢ ( ( ( 𝐸 ∖ 𝐴 ) ⊆ 𝐸 ∧ 𝐸 ⊆ ℝ ∧ ( vol* ‘ 𝐸 ) ∈ ℝ ) → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ∈ ℝ ) | |
| 28 | 26 23 5 27 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ∈ ℝ ) |
| 29 | 25 28 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 30 | inss1 | ⊢ ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 | |
| 31 | imassrn | ⊢ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ⊆ ran ( (,) ∘ 𝐺 ) | |
| 32 | 31 | unissi | ⊢ ∪ ( ( (,) ∘ 𝐺 ) “ ( 1 ... 𝑀 ) ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) |
| 33 | 13 32 | eqsstri | ⊢ 𝐾 ⊆ ∪ ran ( (,) ∘ 𝐺 ) |
| 34 | 33 22 | sstrid | ⊢ ( 𝜑 → 𝐾 ⊆ ℝ ) |
| 35 | 1 2 3 4 5 6 7 8 9 10 | uniioombllem1 | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) |
| 36 | ssid | ⊢ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) | |
| 37 | 9 | ovollb | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 38 | 7 36 37 | sylancl | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 39 | ovollecl | ⊢ ( ( ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) | |
| 40 | 22 35 38 39 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) |
| 41 | ovolsscl | ⊢ ( ( 𝐾 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ∧ ∪ ran ( (,) ∘ 𝐺 ) ⊆ ℝ ∧ ( vol* ‘ ∪ ran ( (,) ∘ 𝐺 ) ) ∈ ℝ ) → ( vol* ‘ 𝐾 ) ∈ ℝ ) | |
| 42 | 33 22 40 41 | mp3an2i | ⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) ∈ ℝ ) |
| 43 | ovolsscl | ⊢ ( ( ( 𝐾 ∩ 𝐴 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℝ ) | |
| 44 | 30 34 42 43 | mp3an2i | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ∈ ℝ ) |
| 45 | difssd | ⊢ ( 𝜑 → ( 𝐾 ∖ 𝐴 ) ⊆ 𝐾 ) | |
| 46 | ovolsscl | ⊢ ( ( ( 𝐾 ∖ 𝐴 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ∈ ℝ ) | |
| 47 | 45 34 42 46 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ∈ ℝ ) |
| 48 | 44 47 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) ∈ ℝ ) |
| 49 | 6 | rpred | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 50 | 49 49 | readdcld | ⊢ ( 𝜑 → ( 𝐶 + 𝐶 ) ∈ ℝ ) |
| 51 | 48 50 | readdcld | ⊢ ( 𝜑 → ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ∈ ℝ ) |
| 52 | 4re | ⊢ 4 ∈ ℝ | |
| 53 | remulcl | ⊢ ( ( 4 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 4 · 𝐶 ) ∈ ℝ ) | |
| 54 | 52 49 53 | sylancr | ⊢ ( 𝜑 → ( 4 · 𝐶 ) ∈ ℝ ) |
| 55 | 5 54 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ∈ ℝ ) |
| 56 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | uniioombllem3 | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) < ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ) |
| 57 | 29 51 56 | ltled | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ≤ ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ) |
| 58 | 5 50 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + ( 𝐶 + 𝐶 ) ) ∈ ℝ ) |
| 59 | 42 49 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐾 ) + 𝐶 ) ∈ ℝ ) |
| 60 | inss1 | ⊢ ( 𝐾 ∩ 𝐿 ) ⊆ 𝐾 | |
| 61 | ovolsscl | ⊢ ( ( ( 𝐾 ∩ 𝐿 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) ∈ ℝ ) | |
| 62 | 60 34 42 61 | mp3an2i | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) ∈ ℝ ) |
| 63 | 62 49 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) ∈ ℝ ) |
| 64 | difssd | ⊢ ( 𝜑 → ( 𝐾 ∖ 𝐿 ) ⊆ 𝐾 ) | |
| 65 | ovolsscl | ⊢ ( ( ( 𝐾 ∖ 𝐿 ) ⊆ 𝐾 ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ∈ ℝ ) | |
| 66 | 64 34 42 65 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ∈ ℝ ) |
| 67 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | uniioombllem4 | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) ≤ ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) ) |
| 68 | imassrn | ⊢ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ⊆ ran ( (,) ∘ 𝐹 ) | |
| 69 | 68 | unissi | ⊢ ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ⊆ ∪ ran ( (,) ∘ 𝐹 ) |
| 70 | 69 16 4 | 3sstr4i | ⊢ 𝐿 ⊆ 𝐴 |
| 71 | sscon | ⊢ ( 𝐿 ⊆ 𝐴 → ( 𝐾 ∖ 𝐴 ) ⊆ ( 𝐾 ∖ 𝐿 ) ) | |
| 72 | 70 71 | mp1i | ⊢ ( 𝜑 → ( 𝐾 ∖ 𝐴 ) ⊆ ( 𝐾 ∖ 𝐿 ) ) |
| 73 | 64 34 | sstrd | ⊢ ( 𝜑 → ( 𝐾 ∖ 𝐿 ) ⊆ ℝ ) |
| 74 | ovolss | ⊢ ( ( ( 𝐾 ∖ 𝐴 ) ⊆ ( 𝐾 ∖ 𝐿 ) ∧ ( 𝐾 ∖ 𝐿 ) ⊆ ℝ ) → ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ≤ ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) | |
| 75 | 72 73 74 | syl2anc | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ≤ ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) |
| 76 | 44 47 63 66 67 75 | le2addd | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) ≤ ( ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) + ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) ) |
| 77 | 62 | recnd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) ∈ ℂ ) |
| 78 | 49 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 79 | 66 | recnd | ⊢ ( 𝜑 → ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ∈ ℂ ) |
| 80 | 77 78 79 | add32d | ⊢ ( 𝜑 → ( ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) + ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) = ( ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) + 𝐶 ) ) |
| 81 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 82 | inss2 | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) | |
| 83 | rexpssxrxp | ⊢ ( ℝ × ℝ ) ⊆ ( ℝ* × ℝ* ) | |
| 84 | 82 83 | sstri | ⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) |
| 85 | fss | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ* × ℝ* ) ) → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) | |
| 86 | 1 84 85 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) |
| 87 | fco | ⊢ ( ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ ∧ 𝐹 : ℕ ⟶ ( ℝ* × ℝ* ) ) → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) | |
| 88 | 81 86 87 | sylancr | ⊢ ( 𝜑 → ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ ) |
| 89 | ffun | ⊢ ( ( (,) ∘ 𝐹 ) : ℕ ⟶ 𝒫 ℝ → Fun ( (,) ∘ 𝐹 ) ) | |
| 90 | funiunfv | ⊢ ( Fun ( (,) ∘ 𝐹 ) → ∪ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ) | |
| 91 | 88 89 90 | 3syl | ⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) = ∪ ( ( (,) ∘ 𝐹 ) “ ( 1 ... 𝑁 ) ) ) |
| 92 | 91 16 | eqtr4di | ⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) = 𝐿 ) |
| 93 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑁 ) ∈ Fin ) | |
| 94 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... 𝑁 ) → 𝑛 ∈ ℕ ) | |
| 95 | fvco3 | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) = ( (,) ‘ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 96 | 1 94 95 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) = ( (,) ‘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 97 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 98 | 1 94 97 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 99 | 98 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ℝ × ℝ ) ) |
| 100 | 1st2nd2 | ⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℝ × ℝ ) → ( 𝐹 ‘ 𝑛 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) 〉 ) | |
| 101 | 99 100 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ 𝑛 ) = 〈 ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) 〉 ) |
| 102 | 101 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑛 ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) 〉 ) ) |
| 103 | df-ov | ⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) = ( (,) ‘ 〈 ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) , ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) 〉 ) | |
| 104 | 102 103 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( (,) ‘ ( 𝐹 ‘ 𝑛 ) ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 105 | 96 104 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) = ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 106 | ioombl | ⊢ ( ( 1st ‘ ( 𝐹 ‘ 𝑛 ) ) (,) ( 2nd ‘ ( 𝐹 ‘ 𝑛 ) ) ) ∈ dom vol | |
| 107 | 105 106 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝑁 ) ) → ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) ∈ dom vol ) |
| 108 | 107 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) ∈ dom vol ) |
| 109 | finiunmbl | ⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ ∀ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) ∈ dom vol ) → ∪ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) ∈ dom vol ) | |
| 110 | 93 108 109 | syl2anc | ⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝑁 ) ( ( (,) ∘ 𝐹 ) ‘ 𝑛 ) ∈ dom vol ) |
| 111 | 92 110 | eqeltrrd | ⊢ ( 𝜑 → 𝐿 ∈ dom vol ) |
| 112 | mblsplit | ⊢ ( ( 𝐿 ∈ dom vol ∧ 𝐾 ⊆ ℝ ∧ ( vol* ‘ 𝐾 ) ∈ ℝ ) → ( vol* ‘ 𝐾 ) = ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) ) | |
| 113 | 111 34 42 112 | syl3anc | ⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) = ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) ) |
| 114 | 113 | oveq1d | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐾 ) + 𝐶 ) = ( ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) + 𝐶 ) ) |
| 115 | 80 114 | eqtr4d | ⊢ ( 𝜑 → ( ( ( vol* ‘ ( 𝐾 ∩ 𝐿 ) ) + 𝐶 ) + ( vol* ‘ ( 𝐾 ∖ 𝐿 ) ) ) = ( ( vol* ‘ 𝐾 ) + 𝐶 ) ) |
| 116 | 76 115 | breqtrd | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐾 ) + 𝐶 ) ) |
| 117 | 5 49 | readdcld | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + 𝐶 ) ∈ ℝ ) |
| 118 | 9 | ovollb | ⊢ ( ( 𝐺 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐾 ⊆ ∪ ran ( (,) ∘ 𝐺 ) ) → ( vol* ‘ 𝐾 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 119 | 7 33 118 | sylancl | ⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 120 | 42 35 117 119 10 | letrd | ⊢ ( 𝜑 → ( vol* ‘ 𝐾 ) ≤ ( ( vol* ‘ 𝐸 ) + 𝐶 ) ) |
| 121 | 42 117 49 120 | leadd1dd | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐾 ) + 𝐶 ) ≤ ( ( ( vol* ‘ 𝐸 ) + 𝐶 ) + 𝐶 ) ) |
| 122 | 5 | recnd | ⊢ ( 𝜑 → ( vol* ‘ 𝐸 ) ∈ ℂ ) |
| 123 | 122 78 78 | addassd | ⊢ ( 𝜑 → ( ( ( vol* ‘ 𝐸 ) + 𝐶 ) + 𝐶 ) = ( ( vol* ‘ 𝐸 ) + ( 𝐶 + 𝐶 ) ) ) |
| 124 | 121 123 | breqtrd | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐾 ) + 𝐶 ) ≤ ( ( vol* ‘ 𝐸 ) + ( 𝐶 + 𝐶 ) ) ) |
| 125 | 48 59 58 116 124 | letrd | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 𝐶 + 𝐶 ) ) ) |
| 126 | 48 58 50 125 | leadd1dd | ⊢ ( 𝜑 → ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ≤ ( ( ( vol* ‘ 𝐸 ) + ( 𝐶 + 𝐶 ) ) + ( 𝐶 + 𝐶 ) ) ) |
| 127 | 50 | recnd | ⊢ ( 𝜑 → ( 𝐶 + 𝐶 ) ∈ ℂ ) |
| 128 | 122 127 127 | addassd | ⊢ ( 𝜑 → ( ( ( vol* ‘ 𝐸 ) + ( 𝐶 + 𝐶 ) ) + ( 𝐶 + 𝐶 ) ) = ( ( vol* ‘ 𝐸 ) + ( ( 𝐶 + 𝐶 ) + ( 𝐶 + 𝐶 ) ) ) ) |
| 129 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 130 | 129 | oveq1i | ⊢ ( ( 2 · 2 ) · 𝐶 ) = ( 4 · 𝐶 ) |
| 131 | 2cnd | ⊢ ( 𝜑 → 2 ∈ ℂ ) | |
| 132 | 131 131 78 | mulassd | ⊢ ( 𝜑 → ( ( 2 · 2 ) · 𝐶 ) = ( 2 · ( 2 · 𝐶 ) ) ) |
| 133 | 78 | 2timesd | ⊢ ( 𝜑 → ( 2 · 𝐶 ) = ( 𝐶 + 𝐶 ) ) |
| 134 | 133 | oveq2d | ⊢ ( 𝜑 → ( 2 · ( 2 · 𝐶 ) ) = ( 2 · ( 𝐶 + 𝐶 ) ) ) |
| 135 | 127 | 2timesd | ⊢ ( 𝜑 → ( 2 · ( 𝐶 + 𝐶 ) ) = ( ( 𝐶 + 𝐶 ) + ( 𝐶 + 𝐶 ) ) ) |
| 136 | 132 134 135 | 3eqtrd | ⊢ ( 𝜑 → ( ( 2 · 2 ) · 𝐶 ) = ( ( 𝐶 + 𝐶 ) + ( 𝐶 + 𝐶 ) ) ) |
| 137 | 130 136 | eqtr3id | ⊢ ( 𝜑 → ( 4 · 𝐶 ) = ( ( 𝐶 + 𝐶 ) + ( 𝐶 + 𝐶 ) ) ) |
| 138 | 137 | oveq2d | ⊢ ( 𝜑 → ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) = ( ( vol* ‘ 𝐸 ) + ( ( 𝐶 + 𝐶 ) + ( 𝐶 + 𝐶 ) ) ) ) |
| 139 | 128 138 | eqtr4d | ⊢ ( 𝜑 → ( ( ( vol* ‘ 𝐸 ) + ( 𝐶 + 𝐶 ) ) + ( 𝐶 + 𝐶 ) ) = ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |
| 140 | 126 139 | breqtrd | ⊢ ( 𝜑 → ( ( ( vol* ‘ ( 𝐾 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐾 ∖ 𝐴 ) ) ) + ( 𝐶 + 𝐶 ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |
| 141 | 29 51 55 57 140 | letrd | ⊢ ( 𝜑 → ( ( vol* ‘ ( 𝐸 ∩ 𝐴 ) ) + ( vol* ‘ ( 𝐸 ∖ 𝐴 ) ) ) ≤ ( ( vol* ‘ 𝐸 ) + ( 4 · 𝐶 ) ) ) |