This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first N elements of an upper integer set are distinct from any later members. (Contributed by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzdisj | ⊢ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 2 | eluzle | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝑘 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ≤ 𝑘 ) |
| 4 | eluzel2 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 5 | 1 4 | syl | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
| 6 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑘 ∈ ℤ ) | |
| 7 | 1 6 | syl | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ℤ ) |
| 8 | zlem1lt | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑁 ≤ 𝑘 ↔ ( 𝑁 − 1 ) < 𝑘 ) ) | |
| 9 | 5 7 8 | syl2anc | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑁 ≤ 𝑘 ↔ ( 𝑁 − 1 ) < 𝑘 ) ) |
| 10 | 3 9 | mpbid | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑁 − 1 ) < 𝑘 ) |
| 11 | 7 | zred | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ℝ ) |
| 12 | peano2zm | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) | |
| 13 | 5 12 | syl | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑁 − 1 ) ∈ ℤ ) |
| 14 | 13 | zred | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑁 − 1 ) ∈ ℝ ) |
| 15 | elinel1 | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) | |
| 16 | elfzle2 | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑘 ≤ ( 𝑁 − 1 ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ≤ ( 𝑁 − 1 ) ) |
| 18 | 11 14 17 | lensymd | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) → ¬ ( 𝑁 − 1 ) < 𝑘 ) |
| 19 | 10 18 | pm2.21dd | ⊢ ( 𝑘 ∈ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) → 𝑘 ∈ ∅ ) |
| 20 | 19 | ssriv | ⊢ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) ⊆ ∅ |
| 21 | ss0 | ⊢ ( ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) ⊆ ∅ → ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ∅ ) | |
| 22 | 20 21 | ax-mp | ⊢ ( ( 𝑀 ... ( 𝑁 − 1 ) ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ∅ |