This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A disjoint collection yields disjoint indexed unions for disjoint index sets. (Contributed by Mario Carneiro, 26-Mar-2015) (Revised by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjiun | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-disj | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
| 2 | elin | ⊢ ( 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ↔ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐶 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) | |
| 3 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐶 𝐵 ↔ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) | |
| 4 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐷 𝐵 ↔ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) | |
| 5 | 3 4 | anbi12i | ⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐶 𝐵 ∧ 𝑦 ∈ ∪ 𝑥 ∈ 𝐷 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) |
| 6 | 2 5 | bitri | ⊢ ( 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ↔ ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) |
| 7 | nfv | ⊢ Ⅎ 𝑧 𝑦 ∈ 𝐵 | |
| 8 | 7 | rmo2 | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ↔ ∃ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ) |
| 9 | an4 | ⊢ ( ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) ∧ ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) ↔ ( ( 𝐶 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) ∧ ( 𝐷 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) ) | |
| 10 | ssralv | ⊢ ( 𝐶 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ∀ 𝑥 ∈ 𝐶 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ) ) | |
| 11 | 10 | impcom | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝐶 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐶 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ) |
| 12 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐶 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐶 ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) ) | |
| 13 | id | ⊢ ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ) | |
| 14 | 13 | imp | ⊢ ( ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑥 = 𝑧 ) |
| 15 | 14 | eleq1d | ⊢ ( ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐶 ↔ 𝑧 ∈ 𝐶 ) ) |
| 16 | 15 | biimpcd | ⊢ ( 𝑥 ∈ 𝐶 → ( ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐶 ) ) |
| 17 | 16 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ 𝐶 ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐶 ) |
| 18 | 12 17 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐶 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐶 ) |
| 19 | 18 | ex | ⊢ ( ∀ 𝑥 ∈ 𝐶 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 → 𝑧 ∈ 𝐶 ) ) |
| 20 | 11 19 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝐶 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 → 𝑧 ∈ 𝐶 ) ) |
| 21 | 20 | expimpd | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ( 𝐶 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐶 ) ) |
| 22 | ssralv | ⊢ ( 𝐷 ⊆ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ∀ 𝑥 ∈ 𝐷 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ) ) | |
| 23 | 22 | impcom | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝐷 ⊆ 𝐴 ) → ∀ 𝑥 ∈ 𝐷 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ) |
| 24 | r19.29 | ⊢ ( ( ∀ 𝑥 ∈ 𝐷 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝐷 ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) ) | |
| 25 | 14 | eleq1d | ⊢ ( ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐷 ↔ 𝑧 ∈ 𝐷 ) ) |
| 26 | 25 | biimpcd | ⊢ ( 𝑥 ∈ 𝐷 → ( ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐷 ) ) |
| 27 | 26 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ 𝐷 ( ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐷 ) |
| 28 | 24 27 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐷 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐷 ) |
| 29 | 28 | ex | ⊢ ( ∀ 𝑥 ∈ 𝐷 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 → 𝑧 ∈ 𝐷 ) ) |
| 30 | 23 29 | syl | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) ∧ 𝐷 ⊆ 𝐴 ) → ( ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 → 𝑧 ∈ 𝐷 ) ) |
| 31 | 30 | expimpd | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ( 𝐷 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) → 𝑧 ∈ 𝐷 ) ) |
| 32 | 21 31 | anim12d | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ( ( 𝐶 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) ∧ ( 𝐷 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) → ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) ) ) |
| 33 | inelcm | ⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑧 ∈ 𝐷 ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) | |
| 34 | 32 33 | syl6 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ( ( 𝐶 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) ∧ ( 𝐷 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) ) |
| 35 | 34 | exlimiv | ⊢ ( ∃ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ( ( 𝐶 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ) ∧ ( 𝐷 ⊆ 𝐴 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) ) |
| 36 | 9 35 | biimtrid | ⊢ ( ∃ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) ∧ ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) ) |
| 37 | 36 | expd | ⊢ ( ∃ 𝑧 ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑥 = 𝑧 ) → ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) → ( ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) ) ) |
| 38 | 8 37 | sylbi | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) → ( ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) ) ) |
| 39 | 38 | impcom | ⊢ ( ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) ∧ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ( ( ∃ 𝑥 ∈ 𝐶 𝑦 ∈ 𝐵 ∧ ∃ 𝑥 ∈ 𝐷 𝑦 ∈ 𝐵 ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) ) |
| 40 | 6 39 | biimtrid | ⊢ ( ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) ∧ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ( 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) → ( 𝐶 ∩ 𝐷 ) ≠ ∅ ) ) |
| 41 | 40 | necon2bd | ⊢ ( ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) ∧ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ( ( 𝐶 ∩ 𝐷 ) = ∅ → ¬ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) ) |
| 42 | 41 | impancom | ⊢ ( ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ) ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ¬ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) ) |
| 43 | 42 | 3impa | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ¬ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) ) |
| 44 | 43 | alimdv | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∀ 𝑦 ¬ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) ) |
| 45 | 1 44 | biimtrid | ⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) → ( Disj 𝑥 ∈ 𝐴 𝐵 → ∀ 𝑦 ¬ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) ) |
| 46 | 45 | impcom | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → ∀ 𝑦 ¬ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) |
| 47 | eq0 | ⊢ ( ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) = ∅ ↔ ∀ 𝑦 ¬ 𝑦 ∈ ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) ) | |
| 48 | 46 47 | sylibr | ⊢ ( ( Disj 𝑥 ∈ 𝐴 𝐵 ∧ ( 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐴 ∧ ( 𝐶 ∩ 𝐷 ) = ∅ ) ) → ( ∪ 𝑥 ∈ 𝐶 𝐵 ∩ ∪ 𝑥 ∈ 𝐷 𝐵 ) = ∅ ) |