This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjss2 | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐵 ⊆ 𝐶 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) | |
| 2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
| 3 | rmoim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) → ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) | |
| 4 | 2 3 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
| 5 | 4 | alimdv | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
| 6 | df-disj | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) | |
| 7 | df-disj | ⊢ ( Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
| 8 | 5 6 7 | 3imtr4g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵 ) ) |