This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue outer measure function is finitely sub-additive. Finite sum version. (Contributed by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolfiniun | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( vol* ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq | ⊢ ( 𝑥 = ∅ → ( ∀ 𝑘 ∈ 𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ↔ ∀ 𝑘 ∈ ∅ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ) | |
| 2 | iuneq1 | ⊢ ( 𝑥 = ∅ → ∪ 𝑘 ∈ 𝑥 𝐵 = ∪ 𝑘 ∈ ∅ 𝐵 ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝑥 = ∅ → ( vol* ‘ ∪ 𝑘 ∈ 𝑥 𝐵 ) = ( vol* ‘ ∪ 𝑘 ∈ ∅ 𝐵 ) ) |
| 4 | sumeq1 | ⊢ ( 𝑥 = ∅ → Σ 𝑘 ∈ 𝑥 ( vol* ‘ 𝐵 ) = Σ 𝑘 ∈ ∅ ( vol* ‘ 𝐵 ) ) | |
| 5 | 3 4 | breq12d | ⊢ ( 𝑥 = ∅ → ( ( vol* ‘ ∪ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( vol* ‘ 𝐵 ) ↔ ( vol* ‘ ∪ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( vol* ‘ 𝐵 ) ) ) |
| 6 | 1 5 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( ∀ 𝑘 ∈ 𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( vol* ‘ 𝐵 ) ) ↔ ( ∀ 𝑘 ∈ ∅ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( vol* ‘ 𝐵 ) ) ) ) |
| 7 | raleq | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑘 ∈ 𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ↔ ∀ 𝑘 ∈ 𝑦 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ) | |
| 8 | iuneq1 | ⊢ ( 𝑥 = 𝑦 → ∪ 𝑘 ∈ 𝑥 𝐵 = ∪ 𝑘 ∈ 𝑦 𝐵 ) | |
| 9 | 8 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( vol* ‘ ∪ 𝑘 ∈ 𝑥 𝐵 ) = ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ) |
| 10 | sumeq1 | ⊢ ( 𝑥 = 𝑦 → Σ 𝑘 ∈ 𝑥 ( vol* ‘ 𝐵 ) = Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) | |
| 11 | 9 10 | breq12d | ⊢ ( 𝑥 = 𝑦 → ( ( vol* ‘ ∪ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( vol* ‘ 𝐵 ) ↔ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) |
| 12 | 7 11 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ∀ 𝑘 ∈ 𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( vol* ‘ 𝐵 ) ) ↔ ( ∀ 𝑘 ∈ 𝑦 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) ) |
| 13 | raleq | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ 𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ↔ ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ) | |
| 14 | iuneq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ∪ 𝑘 ∈ 𝑥 𝐵 = ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) | |
| 15 | 14 | fveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( vol* ‘ ∪ 𝑘 ∈ 𝑥 𝐵 ) = ( vol* ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ) |
| 16 | sumeq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → Σ 𝑘 ∈ 𝑥 ( vol* ‘ 𝐵 ) = Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) ) | |
| 17 | 15 16 | breq12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( vol* ‘ ∪ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( vol* ‘ 𝐵 ) ↔ ( vol* ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) ) ) |
| 18 | 13 17 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ∀ 𝑘 ∈ 𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( vol* ‘ 𝐵 ) ) ↔ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) ) ) ) |
| 19 | raleq | ⊢ ( 𝑥 = 𝐴 → ( ∀ 𝑘 ∈ 𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ↔ ∀ 𝑘 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ) | |
| 20 | iuneq1 | ⊢ ( 𝑥 = 𝐴 → ∪ 𝑘 ∈ 𝑥 𝐵 = ∪ 𝑘 ∈ 𝐴 𝐵 ) | |
| 21 | 20 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( vol* ‘ ∪ 𝑘 ∈ 𝑥 𝐵 ) = ( vol* ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) ) |
| 22 | sumeq1 | ⊢ ( 𝑥 = 𝐴 → Σ 𝑘 ∈ 𝑥 ( vol* ‘ 𝐵 ) = Σ 𝑘 ∈ 𝐴 ( vol* ‘ 𝐵 ) ) | |
| 23 | 21 22 | breq12d | ⊢ ( 𝑥 = 𝐴 → ( ( vol* ‘ ∪ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( vol* ‘ 𝐵 ) ↔ ( vol* ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( vol* ‘ 𝐵 ) ) ) |
| 24 | 19 23 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ∀ 𝑘 ∈ 𝑥 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ 𝑥 𝐵 ) ≤ Σ 𝑘 ∈ 𝑥 ( vol* ‘ 𝐵 ) ) ↔ ( ∀ 𝑘 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( vol* ‘ 𝐵 ) ) ) ) |
| 25 | 0le0 | ⊢ 0 ≤ 0 | |
| 26 | 0iun | ⊢ ∪ 𝑘 ∈ ∅ 𝐵 = ∅ | |
| 27 | 26 | fveq2i | ⊢ ( vol* ‘ ∪ 𝑘 ∈ ∅ 𝐵 ) = ( vol* ‘ ∅ ) |
| 28 | ovol0 | ⊢ ( vol* ‘ ∅ ) = 0 | |
| 29 | 27 28 | eqtri | ⊢ ( vol* ‘ ∪ 𝑘 ∈ ∅ 𝐵 ) = 0 |
| 30 | sum0 | ⊢ Σ 𝑘 ∈ ∅ ( vol* ‘ 𝐵 ) = 0 | |
| 31 | 25 29 30 | 3brtr4i | ⊢ ( vol* ‘ ∪ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( vol* ‘ 𝐵 ) |
| 32 | 31 | a1i | ⊢ ( ∀ 𝑘 ∈ ∅ ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ ∅ 𝐵 ) ≤ Σ 𝑘 ∈ ∅ ( vol* ‘ 𝐵 ) ) |
| 33 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 34 | ssralv | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ∀ 𝑘 ∈ 𝑦 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) ) | |
| 35 | 33 34 | ax-mp | ⊢ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ∀ 𝑘 ∈ 𝑦 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) |
| 36 | 35 | imim1i | ⊢ ( ( ∀ 𝑘 ∈ 𝑦 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) |
| 37 | simprl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) | |
| 38 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 | |
| 39 | nfcv | ⊢ Ⅎ 𝑘 ℝ | |
| 40 | 38 39 | nfss | ⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ |
| 41 | nfcv | ⊢ Ⅎ 𝑘 vol* | |
| 42 | 41 38 | nffv | ⊢ Ⅎ 𝑘 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 43 | 42 | nfel1 | ⊢ Ⅎ 𝑘 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ |
| 44 | 40 43 | nfan | ⊢ Ⅎ 𝑘 ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 45 | csbeq1a | ⊢ ( 𝑘 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) | |
| 46 | 45 | sseq1d | ⊢ ( 𝑘 = 𝑚 → ( 𝐵 ⊆ ℝ ↔ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ) ) |
| 47 | 45 | fveq2d | ⊢ ( 𝑘 = 𝑚 → ( vol* ‘ 𝐵 ) = ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 48 | 47 | eleq1d | ⊢ ( 𝑘 = 𝑚 → ( ( vol* ‘ 𝐵 ) ∈ ℝ ↔ ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 49 | 46 48 | anbi12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ↔ ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) ) |
| 50 | 44 49 | rspc | ⊢ ( 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) ) |
| 51 | 37 50 | mpan9 | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) ∧ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 52 | 51 | simpld | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) ∧ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ) |
| 53 | 52 | ralrimiva | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ) |
| 54 | iunss | ⊢ ( ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ↔ ∀ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ) | |
| 55 | 53 54 | sylibr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ) |
| 56 | iunss1 | ⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) | |
| 57 | 33 56 | ax-mp | ⊢ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 |
| 58 | 57 55 | sstrid | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ) |
| 59 | simpll | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → 𝑦 ∈ Fin ) | |
| 60 | elun1 | ⊢ ( 𝑚 ∈ 𝑦 → 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) | |
| 61 | 51 | simprd | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) ∧ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 62 | 60 61 | sylan2 | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) ∧ 𝑚 ∈ 𝑦 ) → ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 63 | 59 62 | fsumrecl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 64 | simprr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) | |
| 65 | nfcv | ⊢ Ⅎ 𝑚 𝐵 | |
| 66 | 65 38 45 | cbviun | ⊢ ∪ 𝑘 ∈ 𝑦 𝐵 = ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 |
| 67 | 66 | fveq2i | ⊢ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) = ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 68 | nfcv | ⊢ Ⅎ 𝑚 ( vol* ‘ 𝐵 ) | |
| 69 | 47 68 42 | cbvsum | ⊢ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) = Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 70 | 64 67 69 | 3brtr3g | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ≤ Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 71 | ovollecl | ⊢ ( ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ∧ ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ≤ Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) → ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) | |
| 72 | 58 63 70 71 | syl3anc | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 73 | ssun2 | ⊢ { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) | |
| 74 | vsnid | ⊢ 𝑧 ∈ { 𝑧 } | |
| 75 | 73 74 | sselii | ⊢ 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) |
| 76 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 | |
| 77 | 76 39 | nfss | ⊢ Ⅎ 𝑘 ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ⊆ ℝ |
| 78 | 41 76 | nffv | ⊢ Ⅎ 𝑘 ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 79 | 78 | nfel1 | ⊢ Ⅎ 𝑘 ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ |
| 80 | 77 79 | nfan | ⊢ Ⅎ 𝑘 ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 81 | csbeq1a | ⊢ ( 𝑘 = 𝑧 → 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) | |
| 82 | 81 | sseq1d | ⊢ ( 𝑘 = 𝑧 → ( 𝐵 ⊆ ℝ ↔ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ⊆ ℝ ) ) |
| 83 | 81 | fveq2d | ⊢ ( 𝑘 = 𝑧 → ( vol* ‘ 𝐵 ) = ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 84 | 83 | eleq1d | ⊢ ( 𝑘 = 𝑧 → ( ( vol* ‘ 𝐵 ) ∈ ℝ ↔ ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 85 | 82 84 | anbi12d | ⊢ ( 𝑘 = 𝑧 → ( ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ↔ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) ) |
| 86 | 80 85 | rspc | ⊢ ( 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) ) |
| 87 | 75 37 86 | mpsyl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) |
| 88 | 87 | simprd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 89 | 72 88 | readdcld | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ∈ ℝ ) |
| 90 | iunxun | ⊢ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∪ ∪ 𝑚 ∈ { 𝑧 } ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) | |
| 91 | vex | ⊢ 𝑧 ∈ V | |
| 92 | csbeq1 | ⊢ ( 𝑚 = 𝑧 → ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) | |
| 93 | 91 92 | iunxsn | ⊢ ∪ 𝑚 ∈ { 𝑧 } ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = ⦋ 𝑧 / 𝑘 ⦌ 𝐵 |
| 94 | 93 | uneq2i | ⊢ ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∪ ∪ 𝑚 ∈ { 𝑧 } ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∪ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 95 | 90 94 | eqtri | ⊢ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 = ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∪ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) |
| 96 | 95 | fveq2i | ⊢ ( vol* ‘ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( vol* ‘ ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∪ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 97 | ovolun | ⊢ ( ( ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ∧ ( ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∪ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ≤ ( ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) | |
| 98 | 58 72 87 97 | syl21anc | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ ( ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ∪ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ≤ ( ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 99 | 96 98 | eqbrtrid | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ≤ ( ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 100 | ovollecl | ⊢ ( ( ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ⊆ ℝ ∧ ( ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ∈ ℝ ∧ ( vol* ‘ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ≤ ( ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) | |
| 101 | 55 89 99 100 | syl3anc | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 102 | snfi | ⊢ { 𝑧 } ∈ Fin | |
| 103 | unfi | ⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) | |
| 104 | 102 103 | mpan2 | ⊢ ( 𝑦 ∈ Fin → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 105 | 104 | ad2antrr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 106 | 105 61 | fsumrecl | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℝ ) |
| 107 | 72 63 88 70 | leadd1dd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ≤ ( Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 108 | simplr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 109 | disjsn | ⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) | |
| 110 | 108 109 | sylibr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 111 | eqidd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( 𝑦 ∪ { 𝑧 } ) ) | |
| 112 | 61 | recnd | ⊢ ( ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) ∧ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ) → ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ∈ ℂ ) |
| 113 | 110 111 105 112 | fsumsplit | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + Σ 𝑚 ∈ { 𝑧 } ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) ) |
| 114 | 88 | recnd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℂ ) |
| 115 | 92 | fveq2d | ⊢ ( 𝑚 = 𝑧 → ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 116 | 115 | sumsn | ⊢ ( ( 𝑧 ∈ V ∧ ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ∈ ℂ ) → Σ 𝑚 ∈ { 𝑧 } ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 117 | 91 114 116 | sylancr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → Σ 𝑚 ∈ { 𝑧 } ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) |
| 118 | 117 | oveq2d | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + Σ 𝑚 ∈ { 𝑧 } ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) = ( Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 119 | 113 118 | eqtrd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) = ( Σ 𝑚 ∈ 𝑦 ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ) |
| 120 | 107 119 | breqtrrd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( ( vol* ‘ ∪ 𝑚 ∈ 𝑦 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) + ( vol* ‘ ⦋ 𝑧 / 𝑘 ⦌ 𝐵 ) ) ≤ Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 121 | 101 89 106 99 120 | letrd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ≤ Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) ) |
| 122 | 65 38 45 | cbviun | ⊢ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 = ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 |
| 123 | 122 | fveq2i | ⊢ ( vol* ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) = ( vol* ‘ ∪ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 124 | 47 68 42 | cbvsum | ⊢ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) = Σ 𝑚 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
| 125 | 121 123 124 | 3brtr4g | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ∧ ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) ) → ( vol* ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) ) |
| 126 | 125 | exp32 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) → ( vol* ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) ) ) ) |
| 127 | 126 | a2d | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) ) ) ) |
| 128 | 36 127 | syl5 | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ∀ 𝑘 ∈ 𝑦 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ 𝑦 𝐵 ) ≤ Σ 𝑘 ∈ 𝑦 ( vol* ‘ 𝐵 ) ) → ( ∀ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) 𝐵 ) ≤ Σ 𝑘 ∈ ( 𝑦 ∪ { 𝑧 } ) ( vol* ‘ 𝐵 ) ) ) ) |
| 129 | 6 12 18 24 32 128 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( ∀ 𝑘 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( vol* ‘ 𝐵 ) ) ) |
| 130 | 129 | imp | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐵 ⊆ ℝ ∧ ( vol* ‘ 𝐵 ) ∈ ℝ ) ) → ( vol* ‘ ∪ 𝑘 ∈ 𝐴 𝐵 ) ≤ Σ 𝑘 ∈ 𝐴 ( vol* ‘ 𝐵 ) ) |