This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An open real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ioombl | ⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snunioo | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) | |
| 2 | 1 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
| 3 | 2 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ) |
| 4 | lbico1 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ( 𝐴 [,) 𝐵 ) ) | |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 6 | 5 | adantrr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → 𝐴 ∈ ( 𝐴 [,) 𝐵 ) ) |
| 7 | 6 | snssd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → { 𝐴 } ⊆ ( 𝐴 [,) 𝐵 ) ) |
| 8 | iccid | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) | |
| 9 | 8 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( 𝐴 [,] 𝐴 ) = { 𝐴 } ) |
| 10 | 9 | ineq1d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( ( 𝐴 [,] 𝐴 ) ∩ ( 𝐴 (,) 𝐵 ) ) = ( { 𝐴 } ∩ ( 𝐴 (,) 𝐵 ) ) ) |
| 11 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → 𝐴 ∈ ℝ* ) | |
| 12 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → 𝐵 ∈ ℝ* ) | |
| 13 | df-icc | ⊢ [,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦 ) } ) | |
| 14 | df-ioo | ⊢ (,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 15 | xrltnle | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐴 < 𝑤 ↔ ¬ 𝑤 ≤ 𝐴 ) ) | |
| 16 | 13 14 15 | ixxdisj | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 [,] 𝐴 ) ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) |
| 17 | 11 11 12 16 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( ( 𝐴 [,] 𝐴 ) ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) |
| 18 | 10 17 | eqtr3d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( { 𝐴 } ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) |
| 19 | uneqdifeq | ⊢ ( ( { 𝐴 } ⊆ ( 𝐴 [,) 𝐵 ) ∧ ( { 𝐴 } ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) → ( ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ↔ ( ( 𝐴 [,) 𝐵 ) ∖ { 𝐴 } ) = ( 𝐴 (,) 𝐵 ) ) ) | |
| 20 | 7 18 19 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( ( { 𝐴 } ∪ ( 𝐴 (,) 𝐵 ) ) = ( 𝐴 [,) 𝐵 ) ↔ ( ( 𝐴 [,) 𝐵 ) ∖ { 𝐴 } ) = ( 𝐴 (,) 𝐵 ) ) ) |
| 21 | 3 20 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( ( 𝐴 [,) 𝐵 ) ∖ { 𝐴 } ) = ( 𝐴 (,) 𝐵 ) ) |
| 22 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 23 | 22 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → -∞ ∈ ℝ* ) |
| 24 | simprr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → -∞ < 𝐴 ) | |
| 25 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → 𝐴 < 𝐵 ) | |
| 26 | xrre2 | ⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( -∞ < 𝐴 ∧ 𝐴 < 𝐵 ) ) → 𝐴 ∈ ℝ ) | |
| 27 | 23 11 12 24 25 26 | syl32anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → 𝐴 ∈ ℝ ) |
| 28 | icombl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) | |
| 29 | 27 12 28 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( 𝐴 [,) 𝐵 ) ∈ dom vol ) |
| 30 | 27 | snssd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → { 𝐴 } ⊆ ℝ ) |
| 31 | ovolsn | ⊢ ( 𝐴 ∈ ℝ → ( vol* ‘ { 𝐴 } ) = 0 ) | |
| 32 | 27 31 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( vol* ‘ { 𝐴 } ) = 0 ) |
| 33 | nulmbl | ⊢ ( ( { 𝐴 } ⊆ ℝ ∧ ( vol* ‘ { 𝐴 } ) = 0 ) → { 𝐴 } ∈ dom vol ) | |
| 34 | 30 32 33 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → { 𝐴 } ∈ dom vol ) |
| 35 | difmbl | ⊢ ( ( ( 𝐴 [,) 𝐵 ) ∈ dom vol ∧ { 𝐴 } ∈ dom vol ) → ( ( 𝐴 [,) 𝐵 ) ∖ { 𝐴 } ) ∈ dom vol ) | |
| 36 | 29 34 35 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( ( 𝐴 [,) 𝐵 ) ∖ { 𝐴 } ) ∈ dom vol ) |
| 37 | 21 36 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ -∞ < 𝐴 ) ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 38 | 37 | expr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( -∞ < 𝐴 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) ) |
| 39 | uncom | ⊢ ( ( 𝐵 [,) +∞ ) ∪ ( -∞ (,) 𝐵 ) ) = ( ( -∞ (,) 𝐵 ) ∪ ( 𝐵 [,) +∞ ) ) | |
| 40 | 22 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → -∞ ∈ ℝ* ) |
| 41 | simplr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ* ) | |
| 42 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 43 | 42 | a1i | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → +∞ ∈ ℝ* ) |
| 44 | simpll | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ* ) | |
| 45 | mnfle | ⊢ ( 𝐴 ∈ ℝ* → -∞ ≤ 𝐴 ) | |
| 46 | 45 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → -∞ ≤ 𝐴 ) |
| 47 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) | |
| 48 | 40 44 41 46 47 | xrlelttrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → -∞ < 𝐵 ) |
| 49 | pnfge | ⊢ ( 𝐵 ∈ ℝ* → 𝐵 ≤ +∞ ) | |
| 50 | 41 49 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → 𝐵 ≤ +∞ ) |
| 51 | df-ico | ⊢ [,) = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 ≤ 𝑧 ∧ 𝑧 < 𝑦 ) } ) | |
| 52 | xrlenlt | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( 𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵 ) ) | |
| 53 | xrltletr | ⊢ ( ( 𝑤 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑤 < 𝐵 ∧ 𝐵 ≤ +∞ ) → 𝑤 < +∞ ) ) | |
| 54 | xrltletr | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ) → ( ( -∞ < 𝐵 ∧ 𝐵 ≤ 𝑤 ) → -∞ < 𝑤 ) ) | |
| 55 | 14 51 52 14 53 54 | ixxun | ⊢ ( ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < 𝐵 ∧ 𝐵 ≤ +∞ ) ) → ( ( -∞ (,) 𝐵 ) ∪ ( 𝐵 [,) +∞ ) ) = ( -∞ (,) +∞ ) ) |
| 56 | 40 41 43 48 50 55 | syl32anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( -∞ (,) 𝐵 ) ∪ ( 𝐵 [,) +∞ ) ) = ( -∞ (,) +∞ ) ) |
| 57 | 39 56 | eqtrid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 [,) +∞ ) ∪ ( -∞ (,) 𝐵 ) ) = ( -∞ (,) +∞ ) ) |
| 58 | ioomax | ⊢ ( -∞ (,) +∞ ) = ℝ | |
| 59 | 57 58 | eqtrdi | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 [,) +∞ ) ∪ ( -∞ (,) 𝐵 ) ) = ℝ ) |
| 60 | ssun1 | ⊢ ( 𝐵 [,) +∞ ) ⊆ ( ( 𝐵 [,) +∞ ) ∪ ( -∞ (,) 𝐵 ) ) | |
| 61 | 60 59 | sseqtrid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 [,) +∞ ) ⊆ ℝ ) |
| 62 | incom | ⊢ ( ( 𝐵 [,) +∞ ) ∩ ( -∞ (,) 𝐵 ) ) = ( ( -∞ (,) 𝐵 ) ∩ ( 𝐵 [,) +∞ ) ) | |
| 63 | 14 51 52 | ixxdisj | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( -∞ (,) 𝐵 ) ∩ ( 𝐵 [,) +∞ ) ) = ∅ ) |
| 64 | 40 41 43 63 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( -∞ (,) 𝐵 ) ∩ ( 𝐵 [,) +∞ ) ) = ∅ ) |
| 65 | 62 64 | eqtrid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 [,) +∞ ) ∩ ( -∞ (,) 𝐵 ) ) = ∅ ) |
| 66 | uneqdifeq | ⊢ ( ( ( 𝐵 [,) +∞ ) ⊆ ℝ ∧ ( ( 𝐵 [,) +∞ ) ∩ ( -∞ (,) 𝐵 ) ) = ∅ ) → ( ( ( 𝐵 [,) +∞ ) ∪ ( -∞ (,) 𝐵 ) ) = ℝ ↔ ( ℝ ∖ ( 𝐵 [,) +∞ ) ) = ( -∞ (,) 𝐵 ) ) ) | |
| 67 | 61 65 66 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( ( 𝐵 [,) +∞ ) ∪ ( -∞ (,) 𝐵 ) ) = ℝ ↔ ( ℝ ∖ ( 𝐵 [,) +∞ ) ) = ( -∞ (,) 𝐵 ) ) ) |
| 68 | 59 67 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ℝ ∖ ( 𝐵 [,) +∞ ) ) = ( -∞ (,) 𝐵 ) ) |
| 69 | rembl | ⊢ ℝ ∈ dom vol | |
| 70 | xrleloe | ⊢ ( ( 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝐵 ≤ +∞ ↔ ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) ) ) | |
| 71 | 41 42 70 | sylancl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 ≤ +∞ ↔ ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) ) ) |
| 72 | 50 71 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) ) |
| 73 | xrre2 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( 𝐴 < 𝐵 ∧ 𝐵 < +∞ ) ) → 𝐵 ∈ ℝ ) | |
| 74 | 73 | expr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 < +∞ → 𝐵 ∈ ℝ ) ) |
| 75 | 42 74 | mp3anl3 | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 < +∞ → 𝐵 ∈ ℝ ) ) |
| 76 | 75 | orim1d | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ( 𝐵 < +∞ ∨ 𝐵 = +∞ ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) ) ) |
| 77 | 72 76 | mpd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) ) |
| 78 | icombl1 | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 [,) +∞ ) ∈ dom vol ) | |
| 79 | oveq1 | ⊢ ( 𝐵 = +∞ → ( 𝐵 [,) +∞ ) = ( +∞ [,) +∞ ) ) | |
| 80 | pnfge | ⊢ ( +∞ ∈ ℝ* → +∞ ≤ +∞ ) | |
| 81 | 42 80 | ax-mp | ⊢ +∞ ≤ +∞ |
| 82 | ico0 | ⊢ ( ( +∞ ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( +∞ [,) +∞ ) = ∅ ↔ +∞ ≤ +∞ ) ) | |
| 83 | 42 42 82 | mp2an | ⊢ ( ( +∞ [,) +∞ ) = ∅ ↔ +∞ ≤ +∞ ) |
| 84 | 81 83 | mpbir | ⊢ ( +∞ [,) +∞ ) = ∅ |
| 85 | 79 84 | eqtrdi | ⊢ ( 𝐵 = +∞ → ( 𝐵 [,) +∞ ) = ∅ ) |
| 86 | 0mbl | ⊢ ∅ ∈ dom vol | |
| 87 | 85 86 | eqeltrdi | ⊢ ( 𝐵 = +∞ → ( 𝐵 [,) +∞ ) ∈ dom vol ) |
| 88 | 78 87 | jaoi | ⊢ ( ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ) → ( 𝐵 [,) +∞ ) ∈ dom vol ) |
| 89 | 77 88 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐵 [,) +∞ ) ∈ dom vol ) |
| 90 | difmbl | ⊢ ( ( ℝ ∈ dom vol ∧ ( 𝐵 [,) +∞ ) ∈ dom vol ) → ( ℝ ∖ ( 𝐵 [,) +∞ ) ) ∈ dom vol ) | |
| 91 | 69 89 90 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( ℝ ∖ ( 𝐵 [,) +∞ ) ) ∈ dom vol ) |
| 92 | 68 91 | eqeltrrd | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( -∞ (,) 𝐵 ) ∈ dom vol ) |
| 93 | oveq1 | ⊢ ( -∞ = 𝐴 → ( -∞ (,) 𝐵 ) = ( 𝐴 (,) 𝐵 ) ) | |
| 94 | 93 | eleq1d | ⊢ ( -∞ = 𝐴 → ( ( -∞ (,) 𝐵 ) ∈ dom vol ↔ ( 𝐴 (,) 𝐵 ) ∈ dom vol ) ) |
| 95 | 92 94 | syl5ibcom | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( -∞ = 𝐴 → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) ) |
| 96 | xrleloe | ⊢ ( ( -∞ ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( -∞ ≤ 𝐴 ↔ ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) ) ) | |
| 97 | 22 44 96 | sylancr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( -∞ ≤ 𝐴 ↔ ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) ) ) |
| 98 | 46 97 | mpbid | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( -∞ < 𝐴 ∨ -∞ = 𝐴 ) ) |
| 99 | 38 95 98 | mpjaod | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝐴 < 𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 100 | ioo0 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) | |
| 101 | xrlenlt | ⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) | |
| 102 | 101 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
| 103 | 100 102 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ ¬ 𝐴 < 𝐵 ) ) |
| 104 | 103 | biimpar | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
| 105 | 104 86 | eqeltrdi | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 106 | 99 105 | pm2.61dan | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 107 | ndmioo | ⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) = ∅ ) | |
| 108 | 107 86 | eqeltrdi | ⊢ ( ¬ ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 (,) 𝐵 ) ∈ dom vol ) |
| 109 | 106 108 | pm2.61i | ⊢ ( 𝐴 (,) 𝐵 ) ∈ dom vol |