This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovoliun . (Contributed by Mario Carneiro, 12-Jun-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovoliun.t | ⊢ 𝑇 = seq 1 ( + , 𝐺 ) | |
| ovoliun.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) | ||
| ovoliun.a | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) | ||
| ovoliun.v | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) | ||
| ovoliun.r | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) | ||
| ovoliun.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | ||
| ovoliun.s | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) | ||
| ovoliun.u | ⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) | ||
| ovoliun.h | ⊢ 𝐻 = ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ) ) | ||
| ovoliun.j | ⊢ ( 𝜑 → 𝐽 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) | ||
| ovoliun.f | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | ||
| ovoliun.x1 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝐹 ‘ 𝑛 ) ) ) | ||
| ovoliun.x2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) | ||
| ovoliun.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ ) | ||
| ovoliun.l1 | ⊢ ( 𝜑 → 𝐿 ∈ ℤ ) | ||
| ovoliun.l2 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ ( 1 ... 𝐾 ) ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ) | ||
| Assertion | ovoliunlem1 | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝐾 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovoliun.t | ⊢ 𝑇 = seq 1 ( + , 𝐺 ) | |
| 2 | ovoliun.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) | |
| 3 | ovoliun.a | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) | |
| 4 | ovoliun.v | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | ovoliun.r | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) | |
| 6 | ovoliun.b | ⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) | |
| 7 | ovoliun.s | ⊢ 𝑆 = seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 8 | ovoliun.u | ⊢ 𝑈 = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) | |
| 9 | ovoliun.h | ⊢ 𝐻 = ( 𝑘 ∈ ℕ ↦ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ) ) | |
| 10 | ovoliun.j | ⊢ ( 𝜑 → 𝐽 : ℕ –1-1-onto→ ( ℕ × ℕ ) ) | |
| 11 | ovoliun.f | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | |
| 12 | ovoliun.x1 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 13 | ovoliun.x2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) | |
| 14 | ovoliun.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ ) | |
| 15 | ovoliun.l1 | ⊢ ( 𝜑 → 𝐿 ∈ ℤ ) | |
| 16 | ovoliun.l2 | ⊢ ( 𝜑 → ∀ 𝑤 ∈ ( 1 ... 𝐾 ) ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ) | |
| 17 | 2fveq3 | ⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) | |
| 18 | fveq2 | ⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( 2nd ‘ 𝑗 ) = ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) | |
| 19 | 17 18 | fveq12d | ⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
| 20 | 19 | fveq2d | ⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) = ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) |
| 21 | 19 | fveq2d | ⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) = ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) |
| 22 | 20 21 | oveq12d | ⊢ ( 𝑗 = ( 𝐽 ‘ 𝑚 ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ) |
| 23 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝐾 ) ∈ Fin ) | |
| 24 | f1of1 | ⊢ ( 𝐽 : ℕ –1-1-onto→ ( ℕ × ℕ ) → 𝐽 : ℕ –1-1→ ( ℕ × ℕ ) ) | |
| 25 | 10 24 | syl | ⊢ ( 𝜑 → 𝐽 : ℕ –1-1→ ( ℕ × ℕ ) ) |
| 26 | fz1ssnn | ⊢ ( 1 ... 𝐾 ) ⊆ ℕ | |
| 27 | f1ores | ⊢ ( ( 𝐽 : ℕ –1-1→ ( ℕ × ℕ ) ∧ ( 1 ... 𝐾 ) ⊆ ℕ ) → ( 𝐽 ↾ ( 1 ... 𝐾 ) ) : ( 1 ... 𝐾 ) –1-1-onto→ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) | |
| 28 | 25 26 27 | sylancl | ⊢ ( 𝜑 → ( 𝐽 ↾ ( 1 ... 𝐾 ) ) : ( 1 ... 𝐾 ) –1-1-onto→ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 29 | fvres | ⊢ ( 𝑚 ∈ ( 1 ... 𝐾 ) → ( ( 𝐽 ↾ ( 1 ... 𝐾 ) ) ‘ 𝑚 ) = ( 𝐽 ‘ 𝑚 ) ) | |
| 30 | 29 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 𝐽 ↾ ( 1 ... 𝐾 ) ) ‘ 𝑚 ) = ( 𝐽 ‘ 𝑚 ) ) |
| 31 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
| 32 | imassrn | ⊢ ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ran 𝐽 | |
| 33 | f1of | ⊢ ( 𝐽 : ℕ –1-1-onto→ ( ℕ × ℕ ) → 𝐽 : ℕ ⟶ ( ℕ × ℕ ) ) | |
| 34 | 10 33 | syl | ⊢ ( 𝜑 → 𝐽 : ℕ ⟶ ( ℕ × ℕ ) ) |
| 35 | 34 | frnd | ⊢ ( 𝜑 → ran 𝐽 ⊆ ( ℕ × ℕ ) ) |
| 36 | 32 35 | sstrid | ⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) ) |
| 37 | 36 | sselda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → 𝑗 ∈ ( ℕ × ℕ ) ) |
| 38 | xp1st | ⊢ ( 𝑗 ∈ ( ℕ × ℕ ) → ( 1st ‘ 𝑗 ) ∈ ℕ ) | |
| 39 | 37 38 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ 𝑗 ) ∈ ℕ ) |
| 40 | 31 39 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
| 41 | elovolmlem | ⊢ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 42 | 40 41 | sylib | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 43 | xp2nd | ⊢ ( 𝑗 ∈ ( ℕ × ℕ ) → ( 2nd ‘ 𝑗 ) ∈ ℕ ) | |
| 44 | 37 43 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 2nd ‘ 𝑗 ) ∈ ℕ ) |
| 45 | 42 44 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 46 | 45 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ∈ ( ℝ × ℝ ) ) |
| 47 | xp2nd | ⊢ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ∈ ℝ ) | |
| 48 | 46 47 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 49 | xp1st | ⊢ ( ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ∈ ℝ ) | |
| 50 | 46 49 | syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 51 | 48 50 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 52 | 51 | recnd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ∈ ℂ ) |
| 53 | 22 23 28 30 52 | fsumf1o | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = Σ 𝑚 ∈ ( 1 ... 𝐾 ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ) |
| 54 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
| 55 | 34 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐽 ‘ 𝑘 ) ∈ ( ℕ × ℕ ) ) |
| 56 | xp1st | ⊢ ( ( 𝐽 ‘ 𝑘 ) ∈ ( ℕ × ℕ ) → ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ∈ ℕ ) | |
| 57 | 55 56 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ∈ ℕ ) |
| 58 | 54 57 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
| 59 | elovolmlem | ⊢ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 60 | 58 59 | sylib | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 61 | xp2nd | ⊢ ( ( 𝐽 ‘ 𝑘 ) ∈ ( ℕ × ℕ ) → ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ∈ ℕ ) | |
| 62 | 55 61 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ∈ ℕ ) |
| 63 | 60 62 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 64 | 63 9 | fmptd | ⊢ ( 𝜑 → 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 65 | elfznn | ⊢ ( 𝑚 ∈ ( 1 ... 𝐾 ) → 𝑚 ∈ ℕ ) | |
| 66 | eqid | ⊢ ( ( abs ∘ − ) ∘ 𝐻 ) = ( ( abs ∘ − ) ∘ 𝐻 ) | |
| 67 | 66 | ovolfsval | ⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑚 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑚 ) = ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) ) |
| 68 | 64 65 67 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑚 ) = ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) ) |
| 69 | 65 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → 𝑚 ∈ ℕ ) |
| 70 | 2fveq3 | ⊢ ( 𝑘 = 𝑚 → ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) = ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) | |
| 71 | 70 | fveq2d | ⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) = ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
| 72 | 2fveq3 | ⊢ ( 𝑘 = 𝑚 → ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) = ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) | |
| 73 | 71 72 | fveq12d | ⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑘 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑘 ) ) ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
| 74 | fvex | ⊢ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ∈ V | |
| 75 | 73 9 74 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( 𝐻 ‘ 𝑚 ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
| 76 | 69 75 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 𝐻 ‘ 𝑚 ) = ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) |
| 77 | 76 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) = ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) |
| 78 | 76 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) = ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) |
| 79 | 77 78 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) = ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ) |
| 80 | 68 79 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( ( abs ∘ − ) ∘ 𝐻 ) ‘ 𝑚 ) = ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ) |
| 81 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 82 | 14 81 | eleqtrdi | ⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ 1 ) ) |
| 83 | ffvelcdm | ⊢ ( ( 𝐻 : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝐻 ‘ 𝑚 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 84 | 64 65 83 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 𝐻 ‘ 𝑚 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 85 | 84 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 𝐻 ‘ 𝑚 ) ∈ ( ℝ × ℝ ) ) |
| 86 | xp2nd | ⊢ ( ( 𝐻 ‘ 𝑚 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) ∈ ℝ ) | |
| 87 | 85 86 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) ∈ ℝ ) |
| 88 | xp1st | ⊢ ( ( 𝐻 ‘ 𝑚 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ∈ ℝ ) | |
| 89 | 85 88 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ∈ ℝ ) |
| 90 | 87 89 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) ∈ ℝ ) |
| 91 | 90 | recnd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( 𝐻 ‘ 𝑚 ) ) − ( 1st ‘ ( 𝐻 ‘ 𝑚 ) ) ) ∈ ℂ ) |
| 92 | 79 91 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 ... 𝐾 ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) ∈ ℂ ) |
| 93 | 80 82 92 | fsumser | ⊢ ( 𝜑 → Σ 𝑚 ∈ ( 1 ... 𝐾 ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ ( 𝐽 ‘ 𝑚 ) ) ) ‘ ( 2nd ‘ ( 𝐽 ‘ 𝑚 ) ) ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝐾 ) ) |
| 94 | 53 93 | eqtrd | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝐾 ) ) |
| 95 | 8 | fveq1i | ⊢ ( 𝑈 ‘ 𝐾 ) = ( seq 1 ( + , ( ( abs ∘ − ) ∘ 𝐻 ) ) ‘ 𝐾 ) |
| 96 | 94 95 | eqtr4di | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = ( 𝑈 ‘ 𝐾 ) ) |
| 97 | f1oeng | ⊢ ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ ( 𝐽 ↾ ( 1 ... 𝐾 ) ) : ( 1 ... 𝐾 ) –1-1-onto→ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1 ... 𝐾 ) ≈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) | |
| 98 | 23 28 97 | syl2anc | ⊢ ( 𝜑 → ( 1 ... 𝐾 ) ≈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 99 | 98 | ensymd | ⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ≈ ( 1 ... 𝐾 ) ) |
| 100 | enfii | ⊢ ( ( ( 1 ... 𝐾 ) ∈ Fin ∧ ( 𝐽 “ ( 1 ... 𝐾 ) ) ≈ ( 1 ... 𝐾 ) ) → ( 𝐽 “ ( 1 ... 𝐾 ) ) ∈ Fin ) | |
| 101 | 23 99 100 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ∈ Fin ) |
| 102 | 101 51 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 103 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝐿 ) ∈ Fin ) | |
| 104 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... 𝐿 ) → 𝑛 ∈ ℕ ) | |
| 105 | 104 4 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 106 | 103 105 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 107 | 6 | rpred | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 108 | 2nn | ⊢ 2 ∈ ℕ | |
| 109 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 110 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) | |
| 111 | 108 109 110 | sylancr | ⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 112 | 104 111 | syl | ⊢ ( 𝑛 ∈ ( 1 ... 𝐿 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 113 | nndivre | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 2 ↑ 𝑛 ) ∈ ℕ ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) | |
| 114 | 107 112 113 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 115 | 103 114 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 116 | 106 115 | readdcld | ⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 117 | 5 107 | readdcld | ⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ∈ ℝ ) |
| 118 | relxp | ⊢ Rel ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) | |
| 119 | relres | ⊢ Rel ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) | |
| 120 | elsni | ⊢ ( 𝑥 ∈ { 𝑛 } → 𝑥 = 𝑛 ) | |
| 121 | 120 | opeq1d | ⊢ ( 𝑥 ∈ { 𝑛 } → 〈 𝑥 , 𝑦 〉 = 〈 𝑛 , 𝑦 〉 ) |
| 122 | 121 | eleq1d | ⊢ ( 𝑥 ∈ { 𝑛 } → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ↔ 〈 𝑛 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) ) |
| 123 | vex | ⊢ 𝑛 ∈ V | |
| 124 | vex | ⊢ 𝑦 ∈ V | |
| 125 | 123 124 | elimasn | ⊢ ( 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ↔ 〈 𝑛 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 126 | 122 125 | bitr4di | ⊢ ( 𝑥 ∈ { 𝑛 } → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ↔ 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) |
| 127 | 126 | pm5.32i | ⊢ ( ( 𝑥 ∈ { 𝑛 } ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) ↔ ( 𝑥 ∈ { 𝑛 } ∧ 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) |
| 128 | 124 | opelresi | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) ↔ ( 𝑥 ∈ { 𝑛 } ∧ 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) ) |
| 129 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ↔ ( 𝑥 ∈ { 𝑛 } ∧ 𝑦 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) | |
| 130 | 127 128 129 | 3bitr4ri | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) ) |
| 131 | 118 119 130 | eqrelriiv | ⊢ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) |
| 132 | df-res | ⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ↾ { 𝑛 } ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) | |
| 133 | 131 132 | eqtri | ⊢ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) |
| 134 | 133 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) ) |
| 135 | 134 | iuneq2dv | ⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) ) |
| 136 | iunin2 | ⊢ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ( { 𝑛 } × V ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) | |
| 137 | 135 136 | eqtrdi | ⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) ) |
| 138 | relxp | ⊢ Rel ( ℕ × ℕ ) | |
| 139 | relss | ⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) → ( Rel ( ℕ × ℕ ) → Rel ( 𝐽 “ ( 1 ... 𝐾 ) ) ) ) | |
| 140 | 36 138 139 | mpisyl | ⊢ ( 𝜑 → Rel ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 141 | 34 | ffnd | ⊢ ( 𝜑 → 𝐽 Fn ℕ ) |
| 142 | fveq2 | ⊢ ( 𝑗 = ( 𝐽 ‘ 𝑤 ) → ( 1st ‘ 𝑗 ) = ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ) | |
| 143 | 142 | breq1d | ⊢ ( 𝑗 = ( 𝐽 ‘ 𝑤 ) → ( ( 1st ‘ 𝑗 ) ≤ 𝐿 ↔ ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ) ) |
| 144 | 143 | ralima | ⊢ ( ( 𝐽 Fn ℕ ∧ ( 1 ... 𝐾 ) ⊆ ℕ ) → ( ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ≤ 𝐿 ↔ ∀ 𝑤 ∈ ( 1 ... 𝐾 ) ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ) ) |
| 145 | 141 26 144 | sylancl | ⊢ ( 𝜑 → ( ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ≤ 𝐿 ↔ ∀ 𝑤 ∈ ( 1 ... 𝐾 ) ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ) ) |
| 146 | 16 145 | mpbird | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ≤ 𝐿 ) |
| 147 | 146 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ 𝑗 ) ≤ 𝐿 ) |
| 148 | 39 81 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 149 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → 𝐿 ∈ ℤ ) |
| 150 | elfz5 | ⊢ ( ( ( 1st ‘ 𝑗 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝐿 ∈ ℤ ) → ( ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ↔ ( 1st ‘ 𝑗 ) ≤ 𝐿 ) ) | |
| 151 | 148 149 150 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ↔ ( 1st ‘ 𝑗 ) ≤ 𝐿 ) ) |
| 152 | 147 151 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ) → ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ) |
| 153 | 152 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ) |
| 154 | vex | ⊢ 𝑥 ∈ V | |
| 155 | 154 124 | op1std | ⊢ ( 𝑗 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑗 ) = 𝑥 ) |
| 156 | 155 | eleq1d | ⊢ ( 𝑗 = 〈 𝑥 , 𝑦 〉 → ( ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) ↔ 𝑥 ∈ ( 1 ... 𝐿 ) ) ) |
| 157 | 156 | rspccv | ⊢ ( ∀ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( 1st ‘ 𝑗 ) ∈ ( 1 ... 𝐿 ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) → 𝑥 ∈ ( 1 ... 𝐿 ) ) ) |
| 158 | 153 157 | syl | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) → 𝑥 ∈ ( 1 ... 𝐿 ) ) ) |
| 159 | opelxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ↔ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ∧ 𝑦 ∈ V ) ) | |
| 160 | 124 | biantru | ⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ↔ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ∧ 𝑦 ∈ V ) ) |
| 161 | iunid | ⊢ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } = ( 1 ... 𝐿 ) | |
| 162 | 161 | eleq2i | ⊢ ( 𝑥 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } ↔ 𝑥 ∈ ( 1 ... 𝐿 ) ) |
| 163 | 159 160 162 | 3bitr2i | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ↔ 𝑥 ∈ ( 1 ... 𝐿 ) ) |
| 164 | 158 163 | imbitrrdi | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ) ) |
| 165 | 140 164 | relssdv | ⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) ) |
| 166 | xpiundir | ⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) { 𝑛 } × V ) = ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) | |
| 167 | 165 166 | sseqtrdi | ⊢ ( 𝜑 → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) |
| 168 | dfss2 | ⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ↔ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) = ( 𝐽 “ ( 1 ... 𝐾 ) ) ) | |
| 169 | 167 168 | sylib | ⊢ ( 𝜑 → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ∩ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × V ) ) = ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 170 | 137 169 | eqtrd | ⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) = ( 𝐽 “ ( 1 ... 𝐾 ) ) ) |
| 171 | 170 101 | eqeltrd | ⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ) |
| 172 | ssiun2 | ⊢ ( 𝑛 ∈ ( 1 ... 𝐿 ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) | |
| 173 | ssfi | ⊢ ( ( ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ∧ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ⊆ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ) | |
| 174 | 171 172 173 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ) |
| 175 | 2ndconst | ⊢ ( 𝑛 ∈ V → ( 2nd ↾ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) : ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) –1-1-onto→ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) | |
| 176 | 175 | elv | ⊢ ( 2nd ↾ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) : ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) –1-1-onto→ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) |
| 177 | f1oeng | ⊢ ( ( ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ∧ ( 2nd ↾ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) : ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) –1-1-onto→ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ≈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) | |
| 178 | 174 176 177 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ≈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) |
| 179 | 178 | ensymd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ≈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) |
| 180 | enfii | ⊢ ( ( ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ∈ Fin ∧ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ≈ ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ∈ Fin ) | |
| 181 | 174 179 180 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ∈ Fin ) |
| 182 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ ⟶ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) | |
| 183 | 11 104 182 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) |
| 184 | elovolmlem | ⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ↔ ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) | |
| 185 | 183 184 | sylib | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 186 | 185 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 187 | imassrn | ⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ⊆ ran ( 𝐽 “ ( 1 ... 𝐾 ) ) | |
| 188 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) ) |
| 189 | rnss | ⊢ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ( ℕ × ℕ ) → ran ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ran ( ℕ × ℕ ) ) | |
| 190 | 188 189 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ran ( ℕ × ℕ ) ) |
| 191 | rnxpid | ⊢ ran ( ℕ × ℕ ) = ℕ | |
| 192 | 190 191 | sseqtrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran ( 𝐽 “ ( 1 ... 𝐾 ) ) ⊆ ℕ ) |
| 193 | 187 192 | sstrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ⊆ ℕ ) |
| 194 | 193 | sseld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) → 𝑖 ∈ ℕ ) ) |
| 195 | 194 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → 𝑖 ∈ ℕ ) |
| 196 | 186 195 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ∈ ( ≤ ∩ ( ℝ × ℝ ) ) ) |
| 197 | 196 | elin2d | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ∈ ( ℝ × ℝ ) ) |
| 198 | xp2nd | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ∈ ℝ ) | |
| 199 | 197 198 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 200 | xp1st | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ∈ ℝ ) | |
| 201 | 197 200 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 202 | 199 201 | resubcld | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 203 | 202 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 204 | 181 203 | fsumrecl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 205 | 107 111 113 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 206 | 4 205 | readdcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 207 | 104 206 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 208 | eqid | ⊢ ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) = ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) | |
| 209 | 208 7 | ovolsf | ⊢ ( ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 210 | 185 209 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝑆 : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 211 | 210 | frnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ⊆ ( 0 [,) +∞ ) ) |
| 212 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 213 | 211 212 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ⊆ ℝ* ) |
| 214 | supxrcl | ⊢ ( ran 𝑆 ⊆ ℝ* → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) | |
| 215 | 213 214 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ) |
| 216 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 217 | 216 | a1i | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → -∞ ∈ ℝ* ) |
| 218 | 105 | rexrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ∈ ℝ* ) |
| 219 | 105 | mnfltd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → -∞ < ( vol* ‘ 𝐴 ) ) |
| 220 | 104 12 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝐹 ‘ 𝑛 ) ) ) |
| 221 | 7 | ovollb | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝐴 ⊆ ∪ ran ( (,) ∘ ( 𝐹 ‘ 𝑛 ) ) ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 222 | 185 220 221 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 223 | 217 218 215 219 222 | xrltletrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → -∞ < sup ( ran 𝑆 , ℝ* , < ) ) |
| 224 | 104 13 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
| 225 | xrre | ⊢ ( ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ* ∧ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) ∧ ( -∞ < sup ( ran 𝑆 , ℝ* , < ) ∧ sup ( ran 𝑆 , ℝ* , < ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) | |
| 226 | 215 207 223 224 225 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ) |
| 227 | 1zzd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 1 ∈ ℤ ) | |
| 228 | 208 | ovolfsval | ⊢ ( ( ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑖 ) = ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
| 229 | 185 228 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑖 ) = ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
| 230 | 208 | ovolfsf | ⊢ ( ( 𝐹 ‘ 𝑛 ) : ℕ ⟶ ( ≤ ∩ ( ℝ × ℝ ) ) → ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 231 | 185 230 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
| 232 | 231 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ‘ 𝑖 ) ∈ ( 0 [,) +∞ ) ) |
| 233 | 229 232 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 234 | elrege0 | ⊢ ( ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) ) | |
| 235 | 233 234 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) ) |
| 236 | 235 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℝ ) |
| 237 | 235 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑖 ∈ ℕ ) → 0 ≤ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
| 238 | supxrub | ⊢ ( ( ran 𝑆 ⊆ ℝ* ∧ 𝑧 ∈ ran 𝑆 ) → 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) ) | |
| 239 | 213 238 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) ∧ 𝑧 ∈ ran 𝑆 ) → 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 240 | 239 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 241 | brralrspcev | ⊢ ( ( sup ( ran 𝑆 , ℝ* , < ) ∈ ℝ ∧ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ sup ( ran 𝑆 , ℝ* , < ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ) | |
| 242 | 226 240 241 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ) |
| 243 | 210 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝑆 Fn ℕ ) |
| 244 | breq1 | ⊢ ( 𝑧 = ( 𝑆 ‘ 𝑘 ) → ( 𝑧 ≤ 𝑥 ↔ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) | |
| 245 | 244 | ralrn | ⊢ ( 𝑆 Fn ℕ → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 246 | 243 245 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 247 | 246 | rexbidv | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) ) |
| 248 | 242 247 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ∃ 𝑥 ∈ ℝ ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ≤ 𝑥 ) |
| 249 | 81 7 227 229 236 237 248 | isumsup2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 𝑆 ⇝ sup ( ran 𝑆 , ℝ , < ) ) |
| 250 | 7 249 | eqbrtrrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝ sup ( ran 𝑆 , ℝ , < ) ) |
| 251 | climrel | ⊢ Rel ⇝ | |
| 252 | 251 | releldmi | ⊢ ( seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝ sup ( ran 𝑆 , ℝ , < ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 253 | 250 252 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → seq 1 ( + , ( ( abs ∘ − ) ∘ ( 𝐹 ‘ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 254 | 81 227 181 193 229 236 237 253 | isumless | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ≤ Σ 𝑖 ∈ ℕ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
| 255 | 81 7 227 229 236 237 248 | isumsup | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ℕ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) = sup ( ran 𝑆 , ℝ , < ) ) |
| 256 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 257 | 211 256 | sstrdi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ⊆ ℝ ) |
| 258 | 1nn | ⊢ 1 ∈ ℕ | |
| 259 | 210 | fdmd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → dom 𝑆 = ℕ ) |
| 260 | 258 259 | eleqtrrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → 1 ∈ dom 𝑆 ) |
| 261 | 260 | ne0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → dom 𝑆 ≠ ∅ ) |
| 262 | dm0rn0 | ⊢ ( dom 𝑆 = ∅ ↔ ran 𝑆 = ∅ ) | |
| 263 | 262 | necon3bii | ⊢ ( dom 𝑆 ≠ ∅ ↔ ran 𝑆 ≠ ∅ ) |
| 264 | 261 263 | sylib | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ran 𝑆 ≠ ∅ ) |
| 265 | supxrre | ⊢ ( ( ran 𝑆 ⊆ ℝ ∧ ran 𝑆 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑧 ∈ ran 𝑆 𝑧 ≤ 𝑥 ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) ) | |
| 266 | 257 264 242 265 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → sup ( ran 𝑆 , ℝ* , < ) = sup ( ran 𝑆 , ℝ , < ) ) |
| 267 | 255 266 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ℕ ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) = sup ( ran 𝑆 , ℝ* , < ) ) |
| 268 | 254 267 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ≤ sup ( ran 𝑆 , ℝ* , < ) ) |
| 269 | 204 226 207 268 224 | letrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ≤ ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
| 270 | 103 204 207 269 | fsumle | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ≤ Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
| 271 | vex | ⊢ 𝑖 ∈ V | |
| 272 | 123 271 | op1std | ⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 1st ‘ 𝑗 ) = 𝑛 ) |
| 273 | 272 | fveq2d | ⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) = ( 𝐹 ‘ 𝑛 ) ) |
| 274 | 123 271 | op2ndd | ⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 2nd ‘ 𝑗 ) = 𝑖 ) |
| 275 | 273 274 | fveq12d | ⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) |
| 276 | 275 | fveq2d | ⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) = ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) |
| 277 | 275 | fveq2d | ⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) = ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) |
| 278 | 276 277 | oveq12d | ⊢ ( 𝑗 = 〈 𝑛 , 𝑖 〉 → ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ) |
| 279 | 202 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... 𝐿 ) ∧ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ) → ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) ∈ ℂ ) |
| 280 | 278 103 181 279 | fsum2d | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) = Σ 𝑗 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ) |
| 281 | 170 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑗 ∈ ∪ 𝑛 ∈ ( 1 ... 𝐿 ) ( { 𝑛 } × ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) = Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ) |
| 282 | 280 281 | eqtrd | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) Σ 𝑖 ∈ ( ( 𝐽 “ ( 1 ... 𝐾 ) ) “ { 𝑛 } ) ( ( 2nd ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) − ( 1st ‘ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑖 ) ) ) = Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ) |
| 283 | 105 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( vol* ‘ 𝐴 ) ∈ ℂ ) |
| 284 | 114 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐵 / ( 2 ↑ 𝑛 ) ) ∈ ℂ ) |
| 285 | 103 283 284 | fsumadd | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( ( vol* ‘ 𝐴 ) + ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) = ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
| 286 | 270 282 285 | 3brtr3d | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ) |
| 287 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 288 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) | |
| 289 | 2 | fvmpt2 | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( vol* ‘ 𝐴 ) ∈ ℝ ) → ( 𝐺 ‘ 𝑛 ) = ( vol* ‘ 𝐴 ) ) |
| 290 | 288 4 289 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) = ( vol* ‘ 𝐴 ) ) |
| 291 | 290 4 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 292 | 81 287 291 | serfre | ⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
| 293 | 1 | feq1i | ⊢ ( 𝑇 : ℕ ⟶ ℝ ↔ seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
| 294 | 292 293 | sylibr | ⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ℝ ) |
| 295 | 294 | frnd | ⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ ) |
| 296 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 297 | 295 296 | sstrdi | ⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ* ) |
| 298 | 104 290 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... 𝐿 ) ) → ( 𝐺 ‘ 𝑛 ) = ( vol* ‘ 𝐴 ) ) |
| 299 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 300 | ffvelcdm | ⊢ ( ( 𝐽 : ℕ ⟶ ( ℕ × ℕ ) ∧ 1 ∈ ℕ ) → ( 𝐽 ‘ 1 ) ∈ ( ℕ × ℕ ) ) | |
| 301 | 34 258 300 | sylancl | ⊢ ( 𝜑 → ( 𝐽 ‘ 1 ) ∈ ( ℕ × ℕ ) ) |
| 302 | xp1st | ⊢ ( ( 𝐽 ‘ 1 ) ∈ ( ℕ × ℕ ) → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ∈ ℕ ) | |
| 303 | 301 302 | syl | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ∈ ℕ ) |
| 304 | 303 | nnred | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ∈ ℝ ) |
| 305 | 15 | zred | ⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 306 | 303 | nnge1d | ⊢ ( 𝜑 → 1 ≤ ( 1st ‘ ( 𝐽 ‘ 1 ) ) ) |
| 307 | 2fveq3 | ⊢ ( 𝑤 = 1 → ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) = ( 1st ‘ ( 𝐽 ‘ 1 ) ) ) | |
| 308 | 307 | breq1d | ⊢ ( 𝑤 = 1 → ( ( 1st ‘ ( 𝐽 ‘ 𝑤 ) ) ≤ 𝐿 ↔ ( 1st ‘ ( 𝐽 ‘ 1 ) ) ≤ 𝐿 ) ) |
| 309 | eluzfz1 | ⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝐾 ) ) | |
| 310 | 82 309 | syl | ⊢ ( 𝜑 → 1 ∈ ( 1 ... 𝐾 ) ) |
| 311 | 308 16 310 | rspcdva | ⊢ ( 𝜑 → ( 1st ‘ ( 𝐽 ‘ 1 ) ) ≤ 𝐿 ) |
| 312 | 299 304 305 306 311 | letrd | ⊢ ( 𝜑 → 1 ≤ 𝐿 ) |
| 313 | elnnz1 | ⊢ ( 𝐿 ∈ ℕ ↔ ( 𝐿 ∈ ℤ ∧ 1 ≤ 𝐿 ) ) | |
| 314 | 15 312 313 | sylanbrc | ⊢ ( 𝜑 → 𝐿 ∈ ℕ ) |
| 315 | 314 81 | eleqtrdi | ⊢ ( 𝜑 → 𝐿 ∈ ( ℤ≥ ‘ 1 ) ) |
| 316 | 298 315 283 | fsumser | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) = ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ) |
| 317 | seqfn | ⊢ ( 1 ∈ ℤ → seq 1 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 1 ) ) | |
| 318 | 287 317 | syl | ⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 1 ) ) |
| 319 | fnfvelrn | ⊢ ( ( seq 1 ( + , 𝐺 ) Fn ( ℤ≥ ‘ 1 ) ∧ 𝐿 ∈ ( ℤ≥ ‘ 1 ) ) → ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ∈ ran seq 1 ( + , 𝐺 ) ) | |
| 320 | 318 315 319 | syl2anc | ⊢ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ∈ ran seq 1 ( + , 𝐺 ) ) |
| 321 | 1 | rneqi | ⊢ ran 𝑇 = ran seq 1 ( + , 𝐺 ) |
| 322 | 320 321 | eleqtrrdi | ⊢ ( 𝜑 → ( seq 1 ( + , 𝐺 ) ‘ 𝐿 ) ∈ ran 𝑇 ) |
| 323 | 316 322 | eqeltrd | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ∈ ran 𝑇 ) |
| 324 | supxrub | ⊢ ( ( ran 𝑇 ⊆ ℝ* ∧ Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ∈ ran 𝑇 ) → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) | |
| 325 | 297 323 324 | syl2anc | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 326 | 107 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 327 | geo2sum | ⊢ ( ( 𝐿 ∈ ℕ ∧ 𝐵 ∈ ℂ ) → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) = ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) ) | |
| 328 | 314 326 327 | syl2anc | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) = ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) ) |
| 329 | 314 | nnnn0d | ⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
| 330 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝐿 ∈ ℕ0 ) → ( 2 ↑ 𝐿 ) ∈ ℕ ) | |
| 331 | 108 329 330 | sylancr | ⊢ ( 𝜑 → ( 2 ↑ 𝐿 ) ∈ ℕ ) |
| 332 | 331 | nnrpd | ⊢ ( 𝜑 → ( 2 ↑ 𝐿 ) ∈ ℝ+ ) |
| 333 | 6 332 | rpdivcld | ⊢ ( 𝜑 → ( 𝐵 / ( 2 ↑ 𝐿 ) ) ∈ ℝ+ ) |
| 334 | 333 | rpge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) |
| 335 | 107 331 | nndivred | ⊢ ( 𝜑 → ( 𝐵 / ( 2 ↑ 𝐿 ) ) ∈ ℝ ) |
| 336 | 107 335 | subge02d | ⊢ ( 𝜑 → ( 0 ≤ ( 𝐵 / ( 2 ↑ 𝐿 ) ) ↔ ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) ≤ 𝐵 ) ) |
| 337 | 334 336 | mpbid | ⊢ ( 𝜑 → ( 𝐵 − ( 𝐵 / ( 2 ↑ 𝐿 ) ) ) ≤ 𝐵 ) |
| 338 | 328 337 | eqbrtrd | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ≤ 𝐵 ) |
| 339 | 106 115 5 107 325 338 | le2addd | ⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( vol* ‘ 𝐴 ) + Σ 𝑛 ∈ ( 1 ... 𝐿 ) ( 𝐵 / ( 2 ↑ 𝑛 ) ) ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |
| 340 | 102 116 117 286 339 | letrd | ⊢ ( 𝜑 → Σ 𝑗 ∈ ( 𝐽 “ ( 1 ... 𝐾 ) ) ( ( 2nd ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) − ( 1st ‘ ( ( 𝐹 ‘ ( 1st ‘ 𝑗 ) ) ‘ ( 2nd ‘ 𝑗 ) ) ) ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |
| 341 | 96 340 | eqbrtrrd | ⊢ ( 𝜑 → ( 𝑈 ‘ 𝐾 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝐵 ) ) |