This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the finite geometric series 2 ^ -u 1 + 2 ^ -u 2 + ... + 2 ^ -u N , multiplied by a constant. (Contributed by Mario Carneiro, 17-Mar-2014) (Revised by Mario Carneiro, 26-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | geo2sum | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 / ( 2 ↑ 𝑘 ) ) = ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑁 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1zzd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 1 ∈ ℤ ) | |
| 2 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 𝑁 ∈ ℤ ) |
| 4 | simplr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) | |
| 5 | 2nn | ⊢ 2 ∈ ℕ | |
| 6 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℕ ) | |
| 7 | 6 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ ) |
| 8 | 7 | nnnn0d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 9 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) | |
| 10 | 5 8 9 | sylancr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 11 | 10 | nncnd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 2 ↑ 𝑘 ) ∈ ℂ ) |
| 12 | 10 | nnne0d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 2 ↑ 𝑘 ) ≠ 0 ) |
| 13 | 4 11 12 | divcld | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → ( 𝐴 / ( 2 ↑ 𝑘 ) ) ∈ ℂ ) |
| 14 | oveq2 | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 2 ↑ 𝑘 ) = ( 2 ↑ ( 𝑗 + 1 ) ) ) | |
| 15 | 14 | oveq2d | ⊢ ( 𝑘 = ( 𝑗 + 1 ) → ( 𝐴 / ( 2 ↑ 𝑘 ) ) = ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 16 | 1 1 3 13 15 | fsumshftm | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 / ( 2 ↑ 𝑘 ) ) = Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 17 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 18 | 17 | oveq1i | ⊢ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) = ( 0 ... ( 𝑁 − 1 ) ) |
| 19 | 18 | sumeq1i | ⊢ Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) |
| 20 | halfcn | ⊢ ( 1 / 2 ) ∈ ℂ | |
| 21 | elfznn0 | ⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℕ0 ) | |
| 22 | 21 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ℕ0 ) |
| 23 | expcl | ⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ 𝑗 ) ∈ ℂ ) | |
| 24 | 20 22 23 | sylancr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1 / 2 ) ↑ 𝑗 ) ∈ ℂ ) |
| 25 | 2cnd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 2 ∈ ℂ ) | |
| 26 | 2ne0 | ⊢ 2 ≠ 0 | |
| 27 | 26 | a1i | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 2 ≠ 0 ) |
| 28 | 24 25 27 | divrecd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 1 / 2 ) ↑ 𝑗 ) / 2 ) = ( ( ( 1 / 2 ) ↑ 𝑗 ) · ( 1 / 2 ) ) ) |
| 29 | expp1 | ⊢ ( ( ( 1 / 2 ) ∈ ℂ ∧ 𝑗 ∈ ℕ0 ) → ( ( 1 / 2 ) ↑ ( 𝑗 + 1 ) ) = ( ( ( 1 / 2 ) ↑ 𝑗 ) · ( 1 / 2 ) ) ) | |
| 30 | 20 22 29 | sylancr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1 / 2 ) ↑ ( 𝑗 + 1 ) ) = ( ( ( 1 / 2 ) ↑ 𝑗 ) · ( 1 / 2 ) ) ) |
| 31 | elfzelz | ⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℤ ) | |
| 32 | 31 | peano2zd | ⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 𝑗 + 1 ) ∈ ℤ ) |
| 33 | 32 | adantl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℤ ) |
| 34 | 25 27 33 | exprecd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 1 / 2 ) ↑ ( 𝑗 + 1 ) ) = ( 1 / ( 2 ↑ ( 𝑗 + 1 ) ) ) ) |
| 35 | 28 30 34 | 3eqtr2rd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 1 / ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ( 1 / 2 ) ↑ 𝑗 ) / 2 ) ) |
| 36 | 35 | oveq2d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 · ( 1 / ( 2 ↑ ( 𝑗 + 1 ) ) ) ) = ( 𝐴 · ( ( ( 1 / 2 ) ↑ 𝑗 ) / 2 ) ) ) |
| 37 | simplr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝐴 ∈ ℂ ) | |
| 38 | peano2nn0 | ⊢ ( 𝑗 ∈ ℕ0 → ( 𝑗 + 1 ) ∈ ℕ0 ) | |
| 39 | 22 38 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 + 1 ) ∈ ℕ0 ) |
| 40 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ ( 𝑗 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) | |
| 41 | 5 39 40 | sylancr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℕ ) |
| 42 | 41 | nncnd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ∈ ℂ ) |
| 43 | 41 | nnne0d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 2 ↑ ( 𝑗 + 1 ) ) ≠ 0 ) |
| 44 | 37 42 43 | divrecd | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( 𝐴 · ( 1 / ( 2 ↑ ( 𝑗 + 1 ) ) ) ) ) |
| 45 | 24 37 25 27 | div12d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) = ( 𝐴 · ( ( ( 1 / 2 ) ↑ 𝑗 ) / 2 ) ) ) |
| 46 | 36 44 45 | 3eqtr4d | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) ) |
| 47 | 46 | sumeq2dv | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) ) |
| 48 | fzfid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ) | |
| 49 | halfcl | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 / 2 ) ∈ ℂ ) | |
| 50 | 49 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 / 2 ) ∈ ℂ ) |
| 51 | 48 50 24 | fsummulc1 | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) ) |
| 52 | 47 51 | eqtr4d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) ) |
| 53 | 19 52 | eqtrid | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( 𝐴 / ( 2 ↑ ( 𝑗 + 1 ) ) ) = ( Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) ) |
| 54 | 2cnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 2 ∈ ℂ ) | |
| 55 | 26 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 2 ≠ 0 ) |
| 56 | 54 55 3 | exprecd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( 1 / 2 ) ↑ 𝑁 ) = ( 1 / ( 2 ↑ 𝑁 ) ) ) |
| 57 | 56 | oveq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 − ( ( 1 / 2 ) ↑ 𝑁 ) ) = ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) ) |
| 58 | 1mhlfehlf | ⊢ ( 1 − ( 1 / 2 ) ) = ( 1 / 2 ) | |
| 59 | 58 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 − ( 1 / 2 ) ) = ( 1 / 2 ) ) |
| 60 | 57 59 | oveq12d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − ( ( 1 / 2 ) ↑ 𝑁 ) ) / ( 1 − ( 1 / 2 ) ) ) = ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) / ( 1 / 2 ) ) ) |
| 61 | simpr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 𝐴 ∈ ℂ ) | |
| 62 | 61 54 55 | divrec2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 / 2 ) = ( ( 1 / 2 ) · 𝐴 ) ) |
| 63 | 60 62 | oveq12d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( ( 1 − ( ( 1 / 2 ) ↑ 𝑁 ) ) / ( 1 − ( 1 / 2 ) ) ) · ( 𝐴 / 2 ) ) = ( ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) / ( 1 / 2 ) ) · ( ( 1 / 2 ) · 𝐴 ) ) ) |
| 64 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 65 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 66 | 65 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 𝑁 ∈ ℕ0 ) |
| 67 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑁 ) ∈ ℕ ) | |
| 68 | 5 66 67 | sylancr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 2 ↑ 𝑁 ) ∈ ℕ ) |
| 69 | 68 | nnrecred | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 / ( 2 ↑ 𝑁 ) ) ∈ ℝ ) |
| 70 | 69 | recnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 / ( 2 ↑ 𝑁 ) ) ∈ ℂ ) |
| 71 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ ( 1 / ( 2 ↑ 𝑁 ) ) ∈ ℂ ) → ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) ∈ ℂ ) | |
| 72 | 64 70 71 | sylancr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) ∈ ℂ ) |
| 73 | 20 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 / 2 ) ∈ ℂ ) |
| 74 | 0re | ⊢ 0 ∈ ℝ | |
| 75 | halfgt0 | ⊢ 0 < ( 1 / 2 ) | |
| 76 | 74 75 | gtneii | ⊢ ( 1 / 2 ) ≠ 0 |
| 77 | 76 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 / 2 ) ≠ 0 ) |
| 78 | 72 73 77 | divcld | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) / ( 1 / 2 ) ) ∈ ℂ ) |
| 79 | 78 73 61 | mulassd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) / ( 1 / 2 ) ) · ( 1 / 2 ) ) · 𝐴 ) = ( ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) / ( 1 / 2 ) ) · ( ( 1 / 2 ) · 𝐴 ) ) ) |
| 80 | 72 73 77 | divcan1d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) / ( 1 / 2 ) ) · ( 1 / 2 ) ) = ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) ) |
| 81 | 80 | oveq1d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) / ( 1 / 2 ) ) · ( 1 / 2 ) ) · 𝐴 ) = ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) · 𝐴 ) ) |
| 82 | 63 79 81 | 3eqtr2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( ( 1 − ( ( 1 / 2 ) ↑ 𝑁 ) ) / ( 1 − ( 1 / 2 ) ) ) · ( 𝐴 / 2 ) ) = ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) · 𝐴 ) ) |
| 83 | halfre | ⊢ ( 1 / 2 ) ∈ ℝ | |
| 84 | halflt1 | ⊢ ( 1 / 2 ) < 1 | |
| 85 | 83 84 | ltneii | ⊢ ( 1 / 2 ) ≠ 1 |
| 86 | 85 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 / 2 ) ≠ 1 ) |
| 87 | 73 86 66 | geoser | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 / 2 ) ↑ 𝑗 ) = ( ( 1 − ( ( 1 / 2 ) ↑ 𝑁 ) ) / ( 1 − ( 1 / 2 ) ) ) ) |
| 88 | 87 | oveq1d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) = ( ( ( 1 − ( ( 1 / 2 ) ↑ 𝑁 ) ) / ( 1 − ( 1 / 2 ) ) ) · ( 𝐴 / 2 ) ) ) |
| 89 | mullid | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) | |
| 90 | 89 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 91 | 90 | eqcomd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 𝐴 = ( 1 · 𝐴 ) ) |
| 92 | 68 | nncnd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
| 93 | 68 | nnne0d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 2 ↑ 𝑁 ) ≠ 0 ) |
| 94 | 61 92 93 | divrec2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 / ( 2 ↑ 𝑁 ) ) = ( ( 1 / ( 2 ↑ 𝑁 ) ) · 𝐴 ) ) |
| 95 | 91 94 | oveq12d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑁 ) ) ) = ( ( 1 · 𝐴 ) − ( ( 1 / ( 2 ↑ 𝑁 ) ) · 𝐴 ) ) ) |
| 96 | 64 | a1i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → 1 ∈ ℂ ) |
| 97 | 96 70 61 | subdird | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) · 𝐴 ) = ( ( 1 · 𝐴 ) − ( ( 1 / ( 2 ↑ 𝑁 ) ) · 𝐴 ) ) ) |
| 98 | 95 97 | eqtr4d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑁 ) ) ) = ( ( 1 − ( 1 / ( 2 ↑ 𝑁 ) ) ) · 𝐴 ) ) |
| 99 | 82 88 98 | 3eqtr4d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → ( Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 / 2 ) ↑ 𝑗 ) · ( 𝐴 / 2 ) ) = ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑁 ) ) ) ) |
| 100 | 16 53 99 | 3eqtrd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝐴 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐴 / ( 2 ↑ 𝑘 ) ) = ( 𝐴 − ( 𝐴 / ( 2 ↑ 𝑁 ) ) ) ) |