This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum of nonnegative numbers is less than or equal to its limit. (Contributed by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumless.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumless.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isumless.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| isumless.4 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) | ||
| isumless.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | ||
| isumless.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | ||
| isumless.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐵 ) | ||
| isumless.8 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| Assertion | isumless | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ≤ Σ 𝑘 ∈ 𝑍 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumless.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumless.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isumless.3 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 4 | isumless.4 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑍 ) | |
| 5 | isumless.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐵 ) | |
| 6 | isumless.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | |
| 7 | isumless.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐵 ) | |
| 8 | isumless.8 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 9 | 4 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝑍 ) |
| 10 | 6 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 11 | 9 10 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 12 | 11 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
| 13 | 1 | eqimssi | ⊢ 𝑍 ⊆ ( ℤ≥ ‘ 𝑀 ) |
| 14 | 13 | orci | ⊢ ( 𝑍 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑍 ∈ Fin ) |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ( 𝑍 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑍 ∈ Fin ) ) |
| 16 | sumss2 | ⊢ ( ( ( 𝐴 ⊆ 𝑍 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) ∧ ( 𝑍 ⊆ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑍 ∈ Fin ) ) → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) | |
| 17 | 4 12 15 16 | syl21anc | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 18 | eleq1w | ⊢ ( 𝑗 = 𝑘 → ( 𝑗 ∈ 𝐴 ↔ 𝑘 ∈ 𝐴 ) ) | |
| 19 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 20 | 18 19 | ifbieq1d | ⊢ ( 𝑗 = 𝑘 → if ( 𝑗 ∈ 𝐴 , ( 𝐹 ‘ 𝑗 ) , 0 ) = if ( 𝑘 ∈ 𝐴 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 21 | eqid | ⊢ ( 𝑗 ∈ 𝑍 ↦ if ( 𝑗 ∈ 𝐴 , ( 𝐹 ‘ 𝑗 ) , 0 ) ) = ( 𝑗 ∈ 𝑍 ↦ if ( 𝑗 ∈ 𝐴 , ( 𝐹 ‘ 𝑗 ) , 0 ) ) | |
| 22 | fvex | ⊢ ( 𝐹 ‘ 𝑘 ) ∈ V | |
| 23 | c0ex | ⊢ 0 ∈ V | |
| 24 | 22 23 | ifex | ⊢ if ( 𝑘 ∈ 𝐴 , ( 𝐹 ‘ 𝑘 ) , 0 ) ∈ V |
| 25 | 20 21 24 | fvmpt | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝑗 ∈ 𝑍 ↦ if ( 𝑗 ∈ 𝐴 , ( 𝐹 ‘ 𝑗 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑍 ↦ if ( 𝑗 ∈ 𝐴 , ( 𝐹 ‘ 𝑗 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( 𝐹 ‘ 𝑘 ) , 0 ) ) |
| 27 | 5 | ifeq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → if ( 𝑘 ∈ 𝐴 , ( 𝐹 ‘ 𝑘 ) , 0 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 28 | 26 27 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝑗 ∈ 𝑍 ↦ if ( 𝑗 ∈ 𝐴 , ( 𝐹 ‘ 𝑗 ) , 0 ) ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ) |
| 29 | 0re | ⊢ 0 ∈ ℝ | |
| 30 | ifcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℝ ) | |
| 31 | 6 29 30 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ∈ ℝ ) |
| 32 | leid | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ≤ 𝐵 ) | |
| 33 | breq1 | ⊢ ( 𝐵 = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) → ( 𝐵 ≤ 𝐵 ↔ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ≤ 𝐵 ) ) | |
| 34 | breq1 | ⊢ ( 0 = if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) → ( 0 ≤ 𝐵 ↔ if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ≤ 𝐵 ) ) | |
| 35 | 33 34 | ifboth | ⊢ ( ( 𝐵 ≤ 𝐵 ∧ 0 ≤ 𝐵 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ≤ 𝐵 ) |
| 36 | 32 35 | sylan | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 ≤ 𝐵 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ≤ 𝐵 ) |
| 37 | 6 7 36 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ≤ 𝐵 ) |
| 38 | 1 2 3 4 28 11 | fsumcvg3 | ⊢ ( 𝜑 → seq 𝑀 ( + , ( 𝑗 ∈ 𝑍 ↦ if ( 𝑗 ∈ 𝐴 , ( 𝐹 ‘ 𝑗 ) , 0 ) ) ) ∈ dom ⇝ ) |
| 39 | 1 2 28 31 5 6 37 38 8 | isumle | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 if ( 𝑘 ∈ 𝐴 , 𝐵 , 0 ) ≤ Σ 𝑘 ∈ 𝑍 𝐵 ) |
| 40 | 17 39 | eqbrtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 𝐵 ≤ Σ 𝑘 ∈ 𝑍 𝐵 ) |