This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem ensymd

Description: Symmetry of equinumerosity. Deduction form of ensym . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypothesis ensymd.1 ( 𝜑𝐴𝐵 )
Assertion ensymd ( 𝜑𝐵𝐴 )

Proof

Step Hyp Ref Expression
1 ensymd.1 ( 𝜑𝐴𝐵 )
2 ensym ( 𝐴𝐵𝐵𝐴 )
3 1 2 syl ( 𝜑𝐵𝐴 )