This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite sum of nonnegative terms is equal to the supremum of the partial sums. (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumsup.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumsup.2 | ⊢ 𝐺 = seq 𝑀 ( + , 𝐹 ) | ||
| isumsup.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isumsup.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| isumsup.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) | ||
| isumsup.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐴 ) | ||
| isumsup.7 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) | ||
| Assertion | isumsup2 | ⊢ ( 𝜑 → 𝐺 ⇝ sup ( ran 𝐺 , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumsup.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumsup.2 | ⊢ 𝐺 = seq 𝑀 ( + , 𝐹 ) | |
| 3 | isumsup.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 4 | isumsup.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 5 | isumsup.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) | |
| 6 | isumsup.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ 𝐴 ) | |
| 7 | isumsup.7 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝐺 ‘ 𝑗 ) ≤ 𝑥 ) | |
| 8 | 4 5 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 9 | 1 3 8 | serfre | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
| 10 | 2 | feq1i | ⊢ ( 𝐺 : 𝑍 ⟶ ℝ ↔ seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℝ ) |
| 11 | 9 10 | sylibr | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ ℝ ) |
| 12 | simpr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ 𝑍 ) | |
| 13 | 12 1 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 14 | eluzelz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑗 ∈ ℤ ) | |
| 15 | uzid | ⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 16 | peano2uz | ⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 17 | 13 14 15 16 | 4syl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑗 + 1 ) ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 18 | simpl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝜑 ) | |
| 19 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 20 | 19 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) → 𝑘 ∈ 𝑍 ) |
| 21 | 18 20 8 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑗 + 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 22 | 1 | peano2uzs | ⊢ ( 𝑗 ∈ 𝑍 → ( 𝑗 + 1 ) ∈ 𝑍 ) |
| 23 | 22 | adantl | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝑗 + 1 ) ∈ 𝑍 ) |
| 24 | elfzuz | ⊢ ( 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) | |
| 25 | 1 | uztrn2 | ⊢ ( ( ( 𝑗 + 1 ) ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑗 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 26 | 23 24 25 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
| 27 | 6 4 | breqtrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 28 | 27 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ 𝑍 ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 29 | 26 28 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ( 𝑗 + 1 ) ... ( 𝑗 + 1 ) ) ) → 0 ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 30 | 13 17 21 29 | sermono | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ≤ ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + 1 ) ) ) |
| 31 | 2 | fveq1i | ⊢ ( 𝐺 ‘ 𝑗 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) |
| 32 | 2 | fveq1i | ⊢ ( 𝐺 ‘ ( 𝑗 + 1 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑗 + 1 ) ) |
| 33 | 30 31 32 | 3brtr4g | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑗 ) ≤ ( 𝐺 ‘ ( 𝑗 + 1 ) ) ) |
| 34 | 1 3 11 33 7 | climsup | ⊢ ( 𝜑 → 𝐺 ⇝ sup ( ran 𝐺 , ℝ , < ) ) |