This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The mapping of a restriction of the 2nd function to a converse constant function. (Contributed by NM, 27-Mar-2008) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ndconst | ⊢ ( 𝐴 ∈ 𝑉 → ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) : ( { 𝐴 } × 𝐵 ) –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snnzg | ⊢ ( 𝐴 ∈ 𝑉 → { 𝐴 } ≠ ∅ ) | |
| 2 | fo2ndres | ⊢ ( { 𝐴 } ≠ ∅ → ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) : ( { 𝐴 } × 𝐵 ) –onto→ 𝐵 ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ 𝑉 → ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) : ( { 𝐴 } × 𝐵 ) –onto→ 𝐵 ) |
| 4 | moeq | ⊢ ∃* 𝑥 𝑥 = 〈 𝐴 , 𝑦 〉 | |
| 5 | 4 | moani | ⊢ ∃* 𝑥 ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) |
| 6 | vex | ⊢ 𝑦 ∈ V | |
| 7 | 6 | brresi | ⊢ ( 𝑥 ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) 𝑦 ↔ ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ 𝑥 2nd 𝑦 ) ) |
| 8 | fo2nd | ⊢ 2nd : V –onto→ V | |
| 9 | fofn | ⊢ ( 2nd : V –onto→ V → 2nd Fn V ) | |
| 10 | 8 9 | ax-mp | ⊢ 2nd Fn V |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | fnbrfvb | ⊢ ( ( 2nd Fn V ∧ 𝑥 ∈ V ) → ( ( 2nd ‘ 𝑥 ) = 𝑦 ↔ 𝑥 2nd 𝑦 ) ) | |
| 13 | 10 11 12 | mp2an | ⊢ ( ( 2nd ‘ 𝑥 ) = 𝑦 ↔ 𝑥 2nd 𝑦 ) |
| 14 | 13 | anbi2i | ⊢ ( ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ 𝑥 2nd 𝑦 ) ) |
| 15 | elxp7 | ⊢ ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ↔ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ { 𝐴 } ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐵 ) ) ) | |
| 16 | eleq1 | ⊢ ( ( 2nd ‘ 𝑥 ) = 𝑦 → ( ( 2nd ‘ 𝑥 ) ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) | |
| 17 | 16 | biimpac | ⊢ ( ( ( 2nd ‘ 𝑥 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐵 ) |
| 18 | 17 | adantll | ⊢ ( ( ( ( 1st ‘ 𝑥 ) ∈ { 𝐴 } ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐵 ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐵 ) |
| 19 | 18 | adantll | ⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ { 𝐴 } ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐵 ) ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐵 ) |
| 20 | elsni | ⊢ ( ( 1st ‘ 𝑥 ) ∈ { 𝐴 } → ( 1st ‘ 𝑥 ) = 𝐴 ) | |
| 21 | eqopi | ⊢ ( ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) = 𝐴 ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) ) → 𝑥 = 〈 𝐴 , 𝑦 〉 ) | |
| 22 | 21 | anassrs | ⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( 1st ‘ 𝑥 ) = 𝐴 ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → 𝑥 = 〈 𝐴 , 𝑦 〉 ) |
| 23 | 20 22 | sylanl2 | ⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( 1st ‘ 𝑥 ) ∈ { 𝐴 } ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → 𝑥 = 〈 𝐴 , 𝑦 〉 ) |
| 24 | 23 | adantlrr | ⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ { 𝐴 } ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐵 ) ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → 𝑥 = 〈 𝐴 , 𝑦 〉 ) |
| 25 | 19 24 | jca | ⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ { 𝐴 } ∧ ( 2nd ‘ 𝑥 ) ∈ 𝐵 ) ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) |
| 26 | 15 25 | sylanb | ⊢ ( ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) |
| 27 | 26 | adantl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) ) → ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) |
| 28 | simprr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) → 𝑥 = 〈 𝐴 , 𝑦 〉 ) | |
| 29 | snidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ { 𝐴 } ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) → 𝐴 ∈ { 𝐴 } ) |
| 31 | simprl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) → 𝑦 ∈ 𝐵 ) | |
| 32 | 30 31 | opelxpd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) → 〈 𝐴 , 𝑦 〉 ∈ ( { 𝐴 } × 𝐵 ) ) |
| 33 | 28 32 | eqeltrd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) → 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ) |
| 34 | fveq2 | ⊢ ( 𝑥 = 〈 𝐴 , 𝑦 〉 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝐴 , 𝑦 〉 ) ) | |
| 35 | op2ndg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑦 ∈ V ) → ( 2nd ‘ 〈 𝐴 , 𝑦 〉 ) = 𝑦 ) | |
| 36 | 35 | elvd | ⊢ ( 𝐴 ∈ 𝑉 → ( 2nd ‘ 〈 𝐴 , 𝑦 〉 ) = 𝑦 ) |
| 37 | 34 36 | sylan9eqr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) → ( 2nd ‘ 𝑥 ) = 𝑦 ) |
| 38 | 37 | adantrl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) → ( 2nd ‘ 𝑥 ) = 𝑦 ) |
| 39 | 33 38 | jca | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) → ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) ) |
| 40 | 27 39 | impbida | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ ( 2nd ‘ 𝑥 ) = 𝑦 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) ) |
| 41 | 14 40 | bitr3id | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ ( { 𝐴 } × 𝐵 ) ∧ 𝑥 2nd 𝑦 ) ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) ) |
| 42 | 7 41 | bitrid | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝑥 ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) 𝑦 ↔ ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) ) |
| 43 | 42 | mobidv | ⊢ ( 𝐴 ∈ 𝑉 → ( ∃* 𝑥 𝑥 ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) 𝑦 ↔ ∃* 𝑥 ( 𝑦 ∈ 𝐵 ∧ 𝑥 = 〈 𝐴 , 𝑦 〉 ) ) ) |
| 44 | 5 43 | mpbiri | ⊢ ( 𝐴 ∈ 𝑉 → ∃* 𝑥 𝑥 ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) 𝑦 ) |
| 45 | 44 | alrimiv | ⊢ ( 𝐴 ∈ 𝑉 → ∀ 𝑦 ∃* 𝑥 𝑥 ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) 𝑦 ) |
| 46 | funcnv2 | ⊢ ( Fun ◡ ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) ↔ ∀ 𝑦 ∃* 𝑥 𝑥 ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) 𝑦 ) | |
| 47 | 45 46 | sylibr | ⊢ ( 𝐴 ∈ 𝑉 → Fun ◡ ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) ) |
| 48 | dff1o3 | ⊢ ( ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) : ( { 𝐴 } × 𝐵 ) –1-1-onto→ 𝐵 ↔ ( ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) : ( { 𝐴 } × 𝐵 ) –onto→ 𝐵 ∧ Fun ◡ ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) ) ) | |
| 49 | 3 47 48 | sylanbrc | ⊢ ( 𝐴 ∈ 𝑉 → ( 2nd ↾ ( { 𝐴 } × 𝐵 ) ) : ( { 𝐴 } × 𝐵 ) –1-1-onto→ 𝐵 ) |