This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two finite sums. (Contributed by NM, 14-Nov-2005) (Revised by Mario Carneiro, 22-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumadd.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumadd.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
| fsumadd.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | ||
| Assertion | fsumadd | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 + 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ 𝐴 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumadd.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumadd.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
| 3 | fsumadd.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) | |
| 4 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 5 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐵 = 0 | |
| 6 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐶 = 0 | |
| 7 | 5 6 | oveq12i | ⊢ ( Σ 𝑘 ∈ ∅ 𝐵 + Σ 𝑘 ∈ ∅ 𝐶 ) = ( 0 + 0 ) |
| 8 | sum0 | ⊢ Σ 𝑘 ∈ ∅ ( 𝐵 + 𝐶 ) = 0 | |
| 9 | 4 7 8 | 3eqtr4ri | ⊢ Σ 𝑘 ∈ ∅ ( 𝐵 + 𝐶 ) = ( Σ 𝑘 ∈ ∅ 𝐵 + Σ 𝑘 ∈ ∅ 𝐶 ) |
| 10 | sumeq1 | ⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 ( 𝐵 + 𝐶 ) = Σ 𝑘 ∈ ∅ ( 𝐵 + 𝐶 ) ) | |
| 11 | sumeq1 | ⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 𝐵 = Σ 𝑘 ∈ ∅ 𝐵 ) | |
| 12 | sumeq1 | ⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 𝐶 = Σ 𝑘 ∈ ∅ 𝐶 ) | |
| 13 | 11 12 | oveq12d | ⊢ ( 𝐴 = ∅ → ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ 𝐴 𝐶 ) = ( Σ 𝑘 ∈ ∅ 𝐵 + Σ 𝑘 ∈ ∅ 𝐶 ) ) |
| 14 | 9 10 13 | 3eqtr4a | ⊢ ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 ( 𝐵 + 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ 𝐴 𝐶 ) ) |
| 15 | 14 | a1i | ⊢ ( 𝜑 → ( 𝐴 = ∅ → Σ 𝑘 ∈ 𝐴 ( 𝐵 + 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ 𝐴 𝐶 ) ) ) |
| 16 | simprl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) | |
| 17 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 18 | 16 17 | eleqtrdi | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 19 | 2 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 20 | 19 | fmpttd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 21 | simprr | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | |
| 22 | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 24 | fco | ⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) | |
| 25 | 20 23 24 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) |
| 26 | 25 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) ∈ ℂ ) |
| 27 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 28 | 27 | fmpttd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ) |
| 29 | fco | ⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) : 𝐴 ⟶ ℂ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) | |
| 30 | 28 23 29 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) |
| 31 | 30 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ‘ 𝑛 ) ∈ ℂ ) |
| 32 | 23 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) |
| 33 | ovex | ⊢ ( 𝐵 + 𝐶 ) ∈ V | |
| 34 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) = ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) | |
| 35 | 34 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝐴 ∧ ( 𝐵 + 𝐶 ) ∈ V ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ 𝑘 ) = ( 𝐵 + 𝐶 ) ) |
| 36 | 33 35 | mpan2 | ⊢ ( 𝑘 ∈ 𝐴 → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ 𝑘 ) = ( 𝐵 + 𝐶 ) ) |
| 37 | 36 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ 𝑘 ) = ( 𝐵 + 𝐶 ) ) |
| 38 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐴 ) | |
| 39 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) | |
| 40 | 39 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝐵 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
| 41 | 38 2 40 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = 𝐵 ) |
| 42 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) | |
| 43 | 42 | fvmpt2 | ⊢ ( ( 𝑘 ∈ 𝐴 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
| 44 | 38 3 43 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = 𝐶 ) |
| 45 | 41 44 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) + ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) = ( 𝐵 + 𝐶 ) ) |
| 46 | 37 45 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) + ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) ) |
| 47 | 46 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) + ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) ) |
| 48 | 47 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) + ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) ) |
| 49 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) | |
| 50 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) | |
| 51 | nfcv | ⊢ Ⅎ 𝑘 + | |
| 52 | nffvmpt1 | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) | |
| 53 | 50 51 52 | nfov | ⊢ Ⅎ 𝑘 ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) + ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 54 | 49 53 | nfeq | ⊢ Ⅎ 𝑘 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) + ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 55 | fveq2 | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 56 | fveq2 | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 57 | fveq2 | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 58 | 56 57 | oveq12d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) + ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) + ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 59 | 55 58 | eqeq12d | ⊢ ( 𝑘 = ( 𝑓 ‘ 𝑛 ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) + ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) ↔ ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) + ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) |
| 60 | 54 59 | rspc | ⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 → ( ∀ 𝑘 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ 𝑘 ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑘 ) + ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑘 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) + ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) ) |
| 61 | 32 48 60 | sylc | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) + ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 62 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 63 | 23 62 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 64 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 65 | 23 64 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 66 | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 67 | 23 66 | sylan | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 68 | 65 67 | oveq12d | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) + ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ‘ 𝑛 ) ) = ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) + ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) |
| 69 | 61 63 68 | 3eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) + ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ‘ 𝑛 ) ) ) |
| 70 | 18 26 31 69 | seradd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) = ( ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) + ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 71 | fveq2 | ⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 72 | 19 27 | addcld | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 + 𝐶 ) ∈ ℂ ) |
| 73 | 72 | fmpttd | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) : 𝐴 ⟶ ℂ ) |
| 74 | 73 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ 𝑚 ) ∈ ℂ ) |
| 75 | 71 16 21 74 63 | fsum | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ 𝑚 ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 76 | fveq2 | ⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 77 | 20 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ∈ ℂ ) |
| 78 | 76 16 21 77 65 | fsum | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 79 | fveq2 | ⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) | |
| 80 | 28 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
| 81 | 79 16 21 80 67 | fsum | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 82 | 78 81 | oveq12d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) + Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) = ( ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) + ( seq 1 ( + , ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
| 83 | 70 75 82 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ 𝑚 ) = ( Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) + Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) ) |
| 84 | sumfc | ⊢ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ ( 𝐵 + 𝐶 ) ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐴 ( 𝐵 + 𝐶 ) | |
| 85 | sumfc | ⊢ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐴 𝐵 | |
| 86 | sumfc | ⊢ Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = Σ 𝑘 ∈ 𝐴 𝐶 | |
| 87 | 85 86 | oveq12i | ⊢ ( Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) + Σ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ 𝐴 𝐶 ) |
| 88 | 83 84 87 | 3eqtr3g | ⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → Σ 𝑘 ∈ 𝐴 ( 𝐵 + 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ 𝐴 𝐶 ) ) |
| 89 | 88 | expr | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → Σ 𝑘 ∈ 𝐴 ( 𝐵 + 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ 𝐴 𝐶 ) ) ) |
| 90 | 89 | exlimdv | ⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → Σ 𝑘 ∈ 𝐴 ( 𝐵 + 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ 𝐴 𝐶 ) ) ) |
| 91 | 90 | expimpd | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → Σ 𝑘 ∈ 𝐴 ( 𝐵 + 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ 𝐴 𝐶 ) ) ) |
| 92 | fz1f1o | ⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) | |
| 93 | 1 92 | syl | ⊢ ( 𝜑 → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
| 94 | 15 91 93 | mpjaod | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝐴 ( 𝐵 + 𝐶 ) = ( Σ 𝑘 ∈ 𝐴 𝐵 + Σ 𝑘 ∈ 𝐴 𝐶 ) ) |