This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ovoliun . (Contributed by Mario Carneiro, 12-Jun-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovoliun.t | |- T = seq 1 ( + , G ) |
|
| ovoliun.g | |- G = ( n e. NN |-> ( vol* ` A ) ) |
||
| ovoliun.a | |- ( ( ph /\ n e. NN ) -> A C_ RR ) |
||
| ovoliun.v | |- ( ( ph /\ n e. NN ) -> ( vol* ` A ) e. RR ) |
||
| ovoliun.r | |- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
||
| ovoliun.b | |- ( ph -> B e. RR+ ) |
||
| ovoliun.s | |- S = seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) |
||
| ovoliun.u | |- U = seq 1 ( + , ( ( abs o. - ) o. H ) ) |
||
| ovoliun.h | |- H = ( k e. NN |-> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) ) |
||
| ovoliun.j | |- ( ph -> J : NN -1-1-onto-> ( NN X. NN ) ) |
||
| ovoliun.f | |- ( ph -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
||
| ovoliun.x1 | |- ( ( ph /\ n e. NN ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) |
||
| ovoliun.x2 | |- ( ( ph /\ n e. NN ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
||
| ovoliun.k | |- ( ph -> K e. NN ) |
||
| ovoliun.l1 | |- ( ph -> L e. ZZ ) |
||
| ovoliun.l2 | |- ( ph -> A. w e. ( 1 ... K ) ( 1st ` ( J ` w ) ) <_ L ) |
||
| Assertion | ovoliunlem1 | |- ( ph -> ( U ` K ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovoliun.t | |- T = seq 1 ( + , G ) |
|
| 2 | ovoliun.g | |- G = ( n e. NN |-> ( vol* ` A ) ) |
|
| 3 | ovoliun.a | |- ( ( ph /\ n e. NN ) -> A C_ RR ) |
|
| 4 | ovoliun.v | |- ( ( ph /\ n e. NN ) -> ( vol* ` A ) e. RR ) |
|
| 5 | ovoliun.r | |- ( ph -> sup ( ran T , RR* , < ) e. RR ) |
|
| 6 | ovoliun.b | |- ( ph -> B e. RR+ ) |
|
| 7 | ovoliun.s | |- S = seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) |
|
| 8 | ovoliun.u | |- U = seq 1 ( + , ( ( abs o. - ) o. H ) ) |
|
| 9 | ovoliun.h | |- H = ( k e. NN |-> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) ) |
|
| 10 | ovoliun.j | |- ( ph -> J : NN -1-1-onto-> ( NN X. NN ) ) |
|
| 11 | ovoliun.f | |- ( ph -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
|
| 12 | ovoliun.x1 | |- ( ( ph /\ n e. NN ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) |
|
| 13 | ovoliun.x2 | |- ( ( ph /\ n e. NN ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
|
| 14 | ovoliun.k | |- ( ph -> K e. NN ) |
|
| 15 | ovoliun.l1 | |- ( ph -> L e. ZZ ) |
|
| 16 | ovoliun.l2 | |- ( ph -> A. w e. ( 1 ... K ) ( 1st ` ( J ` w ) ) <_ L ) |
|
| 17 | 2fveq3 | |- ( j = ( J ` m ) -> ( F ` ( 1st ` j ) ) = ( F ` ( 1st ` ( J ` m ) ) ) ) |
|
| 18 | fveq2 | |- ( j = ( J ` m ) -> ( 2nd ` j ) = ( 2nd ` ( J ` m ) ) ) |
|
| 19 | 17 18 | fveq12d | |- ( j = ( J ` m ) -> ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) = ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) |
| 20 | 19 | fveq2d | |- ( j = ( J ` m ) -> ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) = ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) |
| 21 | 19 | fveq2d | |- ( j = ( J ` m ) -> ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) = ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) |
| 22 | 20 21 | oveq12d | |- ( j = ( J ` m ) -> ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) ) |
| 23 | fzfid | |- ( ph -> ( 1 ... K ) e. Fin ) |
|
| 24 | f1of1 | |- ( J : NN -1-1-onto-> ( NN X. NN ) -> J : NN -1-1-> ( NN X. NN ) ) |
|
| 25 | 10 24 | syl | |- ( ph -> J : NN -1-1-> ( NN X. NN ) ) |
| 26 | fz1ssnn | |- ( 1 ... K ) C_ NN |
|
| 27 | f1ores | |- ( ( J : NN -1-1-> ( NN X. NN ) /\ ( 1 ... K ) C_ NN ) -> ( J |` ( 1 ... K ) ) : ( 1 ... K ) -1-1-onto-> ( J " ( 1 ... K ) ) ) |
|
| 28 | 25 26 27 | sylancl | |- ( ph -> ( J |` ( 1 ... K ) ) : ( 1 ... K ) -1-1-onto-> ( J " ( 1 ... K ) ) ) |
| 29 | fvres | |- ( m e. ( 1 ... K ) -> ( ( J |` ( 1 ... K ) ) ` m ) = ( J ` m ) ) |
|
| 30 | 29 | adantl | |- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( J |` ( 1 ... K ) ) ` m ) = ( J ` m ) ) |
| 31 | 11 | adantr | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 32 | imassrn | |- ( J " ( 1 ... K ) ) C_ ran J |
|
| 33 | f1of | |- ( J : NN -1-1-onto-> ( NN X. NN ) -> J : NN --> ( NN X. NN ) ) |
|
| 34 | 10 33 | syl | |- ( ph -> J : NN --> ( NN X. NN ) ) |
| 35 | 34 | frnd | |- ( ph -> ran J C_ ( NN X. NN ) ) |
| 36 | 32 35 | sstrid | |- ( ph -> ( J " ( 1 ... K ) ) C_ ( NN X. NN ) ) |
| 37 | 36 | sselda | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> j e. ( NN X. NN ) ) |
| 38 | xp1st | |- ( j e. ( NN X. NN ) -> ( 1st ` j ) e. NN ) |
|
| 39 | 37 38 | syl | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` j ) e. NN ) |
| 40 | 31 39 | ffvelcdmd | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( F ` ( 1st ` j ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 41 | elovolmlem | |- ( ( F ` ( 1st ` j ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` ( 1st ` j ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 42 | 40 41 | sylib | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( F ` ( 1st ` j ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 43 | xp2nd | |- ( j e. ( NN X. NN ) -> ( 2nd ` j ) e. NN ) |
|
| 44 | 37 43 | syl | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 2nd ` j ) e. NN ) |
| 45 | 42 44 | ffvelcdmd | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 46 | 45 | elin2d | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) e. ( RR X. RR ) ) |
| 47 | xp2nd | |- ( ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) e. ( RR X. RR ) -> ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) e. RR ) |
|
| 48 | 46 47 | syl | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) e. RR ) |
| 49 | xp1st | |- ( ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) e. ( RR X. RR ) -> ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) e. RR ) |
|
| 50 | 46 49 | syl | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) e. RR ) |
| 51 | 48 50 | resubcld | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) e. RR ) |
| 52 | 51 | recnd | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) e. CC ) |
| 53 | 22 23 28 30 52 | fsumf1o | |- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = sum_ m e. ( 1 ... K ) ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) ) |
| 54 | 11 | adantr | |- ( ( ph /\ k e. NN ) -> F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 55 | 34 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( J ` k ) e. ( NN X. NN ) ) |
| 56 | xp1st | |- ( ( J ` k ) e. ( NN X. NN ) -> ( 1st ` ( J ` k ) ) e. NN ) |
|
| 57 | 55 56 | syl | |- ( ( ph /\ k e. NN ) -> ( 1st ` ( J ` k ) ) e. NN ) |
| 58 | 54 57 | ffvelcdmd | |- ( ( ph /\ k e. NN ) -> ( F ` ( 1st ` ( J ` k ) ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 59 | elovolmlem | |- ( ( F ` ( 1st ` ( J ` k ) ) ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` ( 1st ` ( J ` k ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 60 | 58 59 | sylib | |- ( ( ph /\ k e. NN ) -> ( F ` ( 1st ` ( J ` k ) ) ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 61 | xp2nd | |- ( ( J ` k ) e. ( NN X. NN ) -> ( 2nd ` ( J ` k ) ) e. NN ) |
|
| 62 | 55 61 | syl | |- ( ( ph /\ k e. NN ) -> ( 2nd ` ( J ` k ) ) e. NN ) |
| 63 | 60 62 | ffvelcdmd | |- ( ( ph /\ k e. NN ) -> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 64 | 63 9 | fmptd | |- ( ph -> H : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 65 | elfznn | |- ( m e. ( 1 ... K ) -> m e. NN ) |
|
| 66 | eqid | |- ( ( abs o. - ) o. H ) = ( ( abs o. - ) o. H ) |
|
| 67 | 66 | ovolfsval | |- ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ m e. NN ) -> ( ( ( abs o. - ) o. H ) ` m ) = ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) ) |
| 68 | 64 65 67 | syl2an | |- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( ( abs o. - ) o. H ) ` m ) = ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) ) |
| 69 | 65 | adantl | |- ( ( ph /\ m e. ( 1 ... K ) ) -> m e. NN ) |
| 70 | 2fveq3 | |- ( k = m -> ( 1st ` ( J ` k ) ) = ( 1st ` ( J ` m ) ) ) |
|
| 71 | 70 | fveq2d | |- ( k = m -> ( F ` ( 1st ` ( J ` k ) ) ) = ( F ` ( 1st ` ( J ` m ) ) ) ) |
| 72 | 2fveq3 | |- ( k = m -> ( 2nd ` ( J ` k ) ) = ( 2nd ` ( J ` m ) ) ) |
|
| 73 | 71 72 | fveq12d | |- ( k = m -> ( ( F ` ( 1st ` ( J ` k ) ) ) ` ( 2nd ` ( J ` k ) ) ) = ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) |
| 74 | fvex | |- ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) e. _V |
|
| 75 | 73 9 74 | fvmpt | |- ( m e. NN -> ( H ` m ) = ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) |
| 76 | 69 75 | syl | |- ( ( ph /\ m e. ( 1 ... K ) ) -> ( H ` m ) = ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) |
| 77 | 76 | fveq2d | |- ( ( ph /\ m e. ( 1 ... K ) ) -> ( 2nd ` ( H ` m ) ) = ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) |
| 78 | 76 | fveq2d | |- ( ( ph /\ m e. ( 1 ... K ) ) -> ( 1st ` ( H ` m ) ) = ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) |
| 79 | 77 78 | oveq12d | |- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) = ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) ) |
| 80 | 68 79 | eqtrd | |- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( ( abs o. - ) o. H ) ` m ) = ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) ) |
| 81 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 82 | 14 81 | eleqtrdi | |- ( ph -> K e. ( ZZ>= ` 1 ) ) |
| 83 | ffvelcdm | |- ( ( H : NN --> ( <_ i^i ( RR X. RR ) ) /\ m e. NN ) -> ( H ` m ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 84 | 64 65 83 | syl2an | |- ( ( ph /\ m e. ( 1 ... K ) ) -> ( H ` m ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 85 | 84 | elin2d | |- ( ( ph /\ m e. ( 1 ... K ) ) -> ( H ` m ) e. ( RR X. RR ) ) |
| 86 | xp2nd | |- ( ( H ` m ) e. ( RR X. RR ) -> ( 2nd ` ( H ` m ) ) e. RR ) |
|
| 87 | 85 86 | syl | |- ( ( ph /\ m e. ( 1 ... K ) ) -> ( 2nd ` ( H ` m ) ) e. RR ) |
| 88 | xp1st | |- ( ( H ` m ) e. ( RR X. RR ) -> ( 1st ` ( H ` m ) ) e. RR ) |
|
| 89 | 85 88 | syl | |- ( ( ph /\ m e. ( 1 ... K ) ) -> ( 1st ` ( H ` m ) ) e. RR ) |
| 90 | 87 89 | resubcld | |- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) e. RR ) |
| 91 | 90 | recnd | |- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( 2nd ` ( H ` m ) ) - ( 1st ` ( H ` m ) ) ) e. CC ) |
| 92 | 79 91 | eqeltrrd | |- ( ( ph /\ m e. ( 1 ... K ) ) -> ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) e. CC ) |
| 93 | 80 82 92 | fsumser | |- ( ph -> sum_ m e. ( 1 ... K ) ( ( 2nd ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) - ( 1st ` ( ( F ` ( 1st ` ( J ` m ) ) ) ` ( 2nd ` ( J ` m ) ) ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` K ) ) |
| 94 | 53 93 | eqtrd | |- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` K ) ) |
| 95 | 8 | fveq1i | |- ( U ` K ) = ( seq 1 ( + , ( ( abs o. - ) o. H ) ) ` K ) |
| 96 | 94 95 | eqtr4di | |- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = ( U ` K ) ) |
| 97 | f1oeng | |- ( ( ( 1 ... K ) e. Fin /\ ( J |` ( 1 ... K ) ) : ( 1 ... K ) -1-1-onto-> ( J " ( 1 ... K ) ) ) -> ( 1 ... K ) ~~ ( J " ( 1 ... K ) ) ) |
|
| 98 | 23 28 97 | syl2anc | |- ( ph -> ( 1 ... K ) ~~ ( J " ( 1 ... K ) ) ) |
| 99 | 98 | ensymd | |- ( ph -> ( J " ( 1 ... K ) ) ~~ ( 1 ... K ) ) |
| 100 | enfii | |- ( ( ( 1 ... K ) e. Fin /\ ( J " ( 1 ... K ) ) ~~ ( 1 ... K ) ) -> ( J " ( 1 ... K ) ) e. Fin ) |
|
| 101 | 23 99 100 | syl2anc | |- ( ph -> ( J " ( 1 ... K ) ) e. Fin ) |
| 102 | 101 51 | fsumrecl | |- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) e. RR ) |
| 103 | fzfid | |- ( ph -> ( 1 ... L ) e. Fin ) |
|
| 104 | elfznn | |- ( n e. ( 1 ... L ) -> n e. NN ) |
|
| 105 | 104 4 | sylan2 | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( vol* ` A ) e. RR ) |
| 106 | 103 105 | fsumrecl | |- ( ph -> sum_ n e. ( 1 ... L ) ( vol* ` A ) e. RR ) |
| 107 | 6 | rpred | |- ( ph -> B e. RR ) |
| 108 | 2nn | |- 2 e. NN |
|
| 109 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 110 | nnexpcl | |- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
|
| 111 | 108 109 110 | sylancr | |- ( n e. NN -> ( 2 ^ n ) e. NN ) |
| 112 | 104 111 | syl | |- ( n e. ( 1 ... L ) -> ( 2 ^ n ) e. NN ) |
| 113 | nndivre | |- ( ( B e. RR /\ ( 2 ^ n ) e. NN ) -> ( B / ( 2 ^ n ) ) e. RR ) |
|
| 114 | 107 112 113 | syl2an | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( B / ( 2 ^ n ) ) e. RR ) |
| 115 | 103 114 | fsumrecl | |- ( ph -> sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) e. RR ) |
| 116 | 106 115 | readdcld | |- ( ph -> ( sum_ n e. ( 1 ... L ) ( vol* ` A ) + sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) ) e. RR ) |
| 117 | 5 107 | readdcld | |- ( ph -> ( sup ( ran T , RR* , < ) + B ) e. RR ) |
| 118 | relxp | |- Rel ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) |
|
| 119 | relres | |- Rel ( ( J " ( 1 ... K ) ) |` { n } ) |
|
| 120 | elsni | |- ( x e. { n } -> x = n ) |
|
| 121 | 120 | opeq1d | |- ( x e. { n } -> <. x , y >. = <. n , y >. ) |
| 122 | 121 | eleq1d | |- ( x e. { n } -> ( <. x , y >. e. ( J " ( 1 ... K ) ) <-> <. n , y >. e. ( J " ( 1 ... K ) ) ) ) |
| 123 | vex | |- n e. _V |
|
| 124 | vex | |- y e. _V |
|
| 125 | 123 124 | elimasn | |- ( y e. ( ( J " ( 1 ... K ) ) " { n } ) <-> <. n , y >. e. ( J " ( 1 ... K ) ) ) |
| 126 | 122 125 | bitr4di | |- ( x e. { n } -> ( <. x , y >. e. ( J " ( 1 ... K ) ) <-> y e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
| 127 | 126 | pm5.32i | |- ( ( x e. { n } /\ <. x , y >. e. ( J " ( 1 ... K ) ) ) <-> ( x e. { n } /\ y e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
| 128 | 124 | opelresi | |- ( <. x , y >. e. ( ( J " ( 1 ... K ) ) |` { n } ) <-> ( x e. { n } /\ <. x , y >. e. ( J " ( 1 ... K ) ) ) ) |
| 129 | opelxp | |- ( <. x , y >. e. ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) <-> ( x e. { n } /\ y e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
|
| 130 | 127 128 129 | 3bitr4ri | |- ( <. x , y >. e. ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) <-> <. x , y >. e. ( ( J " ( 1 ... K ) ) |` { n } ) ) |
| 131 | 118 119 130 | eqrelriiv | |- ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( ( J " ( 1 ... K ) ) |` { n } ) |
| 132 | df-res | |- ( ( J " ( 1 ... K ) ) |` { n } ) = ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) |
|
| 133 | 131 132 | eqtri | |- ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) |
| 134 | 133 | a1i | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) ) |
| 135 | 134 | iuneq2dv | |- ( ph -> U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = U_ n e. ( 1 ... L ) ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) ) |
| 136 | iunin2 | |- U_ n e. ( 1 ... L ) ( ( J " ( 1 ... K ) ) i^i ( { n } X. _V ) ) = ( ( J " ( 1 ... K ) ) i^i U_ n e. ( 1 ... L ) ( { n } X. _V ) ) |
|
| 137 | 135 136 | eqtrdi | |- ( ph -> U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( ( J " ( 1 ... K ) ) i^i U_ n e. ( 1 ... L ) ( { n } X. _V ) ) ) |
| 138 | relxp | |- Rel ( NN X. NN ) |
|
| 139 | relss | |- ( ( J " ( 1 ... K ) ) C_ ( NN X. NN ) -> ( Rel ( NN X. NN ) -> Rel ( J " ( 1 ... K ) ) ) ) |
|
| 140 | 36 138 139 | mpisyl | |- ( ph -> Rel ( J " ( 1 ... K ) ) ) |
| 141 | 34 | ffnd | |- ( ph -> J Fn NN ) |
| 142 | fveq2 | |- ( j = ( J ` w ) -> ( 1st ` j ) = ( 1st ` ( J ` w ) ) ) |
|
| 143 | 142 | breq1d | |- ( j = ( J ` w ) -> ( ( 1st ` j ) <_ L <-> ( 1st ` ( J ` w ) ) <_ L ) ) |
| 144 | 143 | ralima | |- ( ( J Fn NN /\ ( 1 ... K ) C_ NN ) -> ( A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) <_ L <-> A. w e. ( 1 ... K ) ( 1st ` ( J ` w ) ) <_ L ) ) |
| 145 | 141 26 144 | sylancl | |- ( ph -> ( A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) <_ L <-> A. w e. ( 1 ... K ) ( 1st ` ( J ` w ) ) <_ L ) ) |
| 146 | 16 145 | mpbird | |- ( ph -> A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) <_ L ) |
| 147 | 146 | r19.21bi | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` j ) <_ L ) |
| 148 | 39 81 | eleqtrdi | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` j ) e. ( ZZ>= ` 1 ) ) |
| 149 | 15 | adantr | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> L e. ZZ ) |
| 150 | elfz5 | |- ( ( ( 1st ` j ) e. ( ZZ>= ` 1 ) /\ L e. ZZ ) -> ( ( 1st ` j ) e. ( 1 ... L ) <-> ( 1st ` j ) <_ L ) ) |
|
| 151 | 148 149 150 | syl2anc | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( ( 1st ` j ) e. ( 1 ... L ) <-> ( 1st ` j ) <_ L ) ) |
| 152 | 147 151 | mpbird | |- ( ( ph /\ j e. ( J " ( 1 ... K ) ) ) -> ( 1st ` j ) e. ( 1 ... L ) ) |
| 153 | 152 | ralrimiva | |- ( ph -> A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) e. ( 1 ... L ) ) |
| 154 | vex | |- x e. _V |
|
| 155 | 154 124 | op1std | |- ( j = <. x , y >. -> ( 1st ` j ) = x ) |
| 156 | 155 | eleq1d | |- ( j = <. x , y >. -> ( ( 1st ` j ) e. ( 1 ... L ) <-> x e. ( 1 ... L ) ) ) |
| 157 | 156 | rspccv | |- ( A. j e. ( J " ( 1 ... K ) ) ( 1st ` j ) e. ( 1 ... L ) -> ( <. x , y >. e. ( J " ( 1 ... K ) ) -> x e. ( 1 ... L ) ) ) |
| 158 | 153 157 | syl | |- ( ph -> ( <. x , y >. e. ( J " ( 1 ... K ) ) -> x e. ( 1 ... L ) ) ) |
| 159 | opelxp | |- ( <. x , y >. e. ( U_ n e. ( 1 ... L ) { n } X. _V ) <-> ( x e. U_ n e. ( 1 ... L ) { n } /\ y e. _V ) ) |
|
| 160 | 124 | biantru | |- ( x e. U_ n e. ( 1 ... L ) { n } <-> ( x e. U_ n e. ( 1 ... L ) { n } /\ y e. _V ) ) |
| 161 | iunid | |- U_ n e. ( 1 ... L ) { n } = ( 1 ... L ) |
|
| 162 | 161 | eleq2i | |- ( x e. U_ n e. ( 1 ... L ) { n } <-> x e. ( 1 ... L ) ) |
| 163 | 159 160 162 | 3bitr2i | |- ( <. x , y >. e. ( U_ n e. ( 1 ... L ) { n } X. _V ) <-> x e. ( 1 ... L ) ) |
| 164 | 158 163 | imbitrrdi | |- ( ph -> ( <. x , y >. e. ( J " ( 1 ... K ) ) -> <. x , y >. e. ( U_ n e. ( 1 ... L ) { n } X. _V ) ) ) |
| 165 | 140 164 | relssdv | |- ( ph -> ( J " ( 1 ... K ) ) C_ ( U_ n e. ( 1 ... L ) { n } X. _V ) ) |
| 166 | xpiundir | |- ( U_ n e. ( 1 ... L ) { n } X. _V ) = U_ n e. ( 1 ... L ) ( { n } X. _V ) |
|
| 167 | 165 166 | sseqtrdi | |- ( ph -> ( J " ( 1 ... K ) ) C_ U_ n e. ( 1 ... L ) ( { n } X. _V ) ) |
| 168 | dfss2 | |- ( ( J " ( 1 ... K ) ) C_ U_ n e. ( 1 ... L ) ( { n } X. _V ) <-> ( ( J " ( 1 ... K ) ) i^i U_ n e. ( 1 ... L ) ( { n } X. _V ) ) = ( J " ( 1 ... K ) ) ) |
|
| 169 | 167 168 | sylib | |- ( ph -> ( ( J " ( 1 ... K ) ) i^i U_ n e. ( 1 ... L ) ( { n } X. _V ) ) = ( J " ( 1 ... K ) ) ) |
| 170 | 137 169 | eqtrd | |- ( ph -> U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) = ( J " ( 1 ... K ) ) ) |
| 171 | 170 101 | eqeltrd | |- ( ph -> U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin ) |
| 172 | ssiun2 | |- ( n e. ( 1 ... L ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) C_ U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
|
| 173 | ssfi | |- ( ( U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin /\ ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) C_ U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin ) |
|
| 174 | 171 172 173 | syl2an | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin ) |
| 175 | 2ndconst | |- ( n e. _V -> ( 2nd |` ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) : ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) -1-1-onto-> ( ( J " ( 1 ... K ) ) " { n } ) ) |
|
| 176 | 175 | elv | |- ( 2nd |` ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) : ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) -1-1-onto-> ( ( J " ( 1 ... K ) ) " { n } ) |
| 177 | f1oeng | |- ( ( ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin /\ ( 2nd |` ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) : ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) -1-1-onto-> ( ( J " ( 1 ... K ) ) " { n } ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ~~ ( ( J " ( 1 ... K ) ) " { n } ) ) |
|
| 178 | 174 176 177 | sylancl | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ~~ ( ( J " ( 1 ... K ) ) " { n } ) ) |
| 179 | 178 | ensymd | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( J " ( 1 ... K ) ) " { n } ) ~~ ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) |
| 180 | enfii | |- ( ( ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) e. Fin /\ ( ( J " ( 1 ... K ) ) " { n } ) ~~ ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( J " ( 1 ... K ) ) " { n } ) e. Fin ) |
|
| 181 | 174 179 180 | syl2anc | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( J " ( 1 ... K ) ) " { n } ) e. Fin ) |
| 182 | ffvelcdm | |- ( ( F : NN --> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
|
| 183 | 11 104 182 | syl2an | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
| 184 | elovolmlem | |- ( ( F ` n ) e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 185 | 183 184 | sylib | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 186 | 185 | adantrr | |- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 187 | imassrn | |- ( ( J " ( 1 ... K ) ) " { n } ) C_ ran ( J " ( 1 ... K ) ) |
|
| 188 | 36 | adantr | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( J " ( 1 ... K ) ) C_ ( NN X. NN ) ) |
| 189 | rnss | |- ( ( J " ( 1 ... K ) ) C_ ( NN X. NN ) -> ran ( J " ( 1 ... K ) ) C_ ran ( NN X. NN ) ) |
|
| 190 | 188 189 | syl | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ran ( J " ( 1 ... K ) ) C_ ran ( NN X. NN ) ) |
| 191 | rnxpid | |- ran ( NN X. NN ) = NN |
|
| 192 | 190 191 | sseqtrdi | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ran ( J " ( 1 ... K ) ) C_ NN ) |
| 193 | 187 192 | sstrid | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( J " ( 1 ... K ) ) " { n } ) C_ NN ) |
| 194 | 193 | sseld | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( i e. ( ( J " ( 1 ... K ) ) " { n } ) -> i e. NN ) ) |
| 195 | 194 | impr | |- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> i e. NN ) |
| 196 | 186 195 | ffvelcdmd | |- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( F ` n ) ` i ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 197 | 196 | elin2d | |- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( F ` n ) ` i ) e. ( RR X. RR ) ) |
| 198 | xp2nd | |- ( ( ( F ` n ) ` i ) e. ( RR X. RR ) -> ( 2nd ` ( ( F ` n ) ` i ) ) e. RR ) |
|
| 199 | 197 198 | syl | |- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( 2nd ` ( ( F ` n ) ` i ) ) e. RR ) |
| 200 | xp1st | |- ( ( ( F ` n ) ` i ) e. ( RR X. RR ) -> ( 1st ` ( ( F ` n ) ` i ) ) e. RR ) |
|
| 201 | 197 200 | syl | |- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( 1st ` ( ( F ` n ) ` i ) ) e. RR ) |
| 202 | 199 201 | resubcld | |- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR ) |
| 203 | 202 | anassrs | |- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR ) |
| 204 | 181 203 | fsumrecl | |- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR ) |
| 205 | 107 111 113 | syl2an | |- ( ( ph /\ n e. NN ) -> ( B / ( 2 ^ n ) ) e. RR ) |
| 206 | 4 205 | readdcld | |- ( ( ph /\ n e. NN ) -> ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) e. RR ) |
| 207 | 104 206 | sylan2 | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) e. RR ) |
| 208 | eqid | |- ( ( abs o. - ) o. ( F ` n ) ) = ( ( abs o. - ) o. ( F ` n ) ) |
|
| 209 | 208 7 | ovolsf | |- ( ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 210 | 185 209 | syl | |- ( ( ph /\ n e. ( 1 ... L ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 211 | 210 | frnd | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ran S C_ ( 0 [,) +oo ) ) |
| 212 | icossxr | |- ( 0 [,) +oo ) C_ RR* |
|
| 213 | 211 212 | sstrdi | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ran S C_ RR* ) |
| 214 | supxrcl | |- ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) |
|
| 215 | 213 214 | syl | |- ( ( ph /\ n e. ( 1 ... L ) ) -> sup ( ran S , RR* , < ) e. RR* ) |
| 216 | mnfxr | |- -oo e. RR* |
|
| 217 | 216 | a1i | |- ( ( ph /\ n e. ( 1 ... L ) ) -> -oo e. RR* ) |
| 218 | 105 | rexrd | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( vol* ` A ) e. RR* ) |
| 219 | 105 | mnfltd | |- ( ( ph /\ n e. ( 1 ... L ) ) -> -oo < ( vol* ` A ) ) |
| 220 | 104 12 | sylan2 | |- ( ( ph /\ n e. ( 1 ... L ) ) -> A C_ U. ran ( (,) o. ( F ` n ) ) ) |
| 221 | 7 | ovollb | |- ( ( ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) /\ A C_ U. ran ( (,) o. ( F ` n ) ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |
| 222 | 185 220 221 | syl2anc | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( vol* ` A ) <_ sup ( ran S , RR* , < ) ) |
| 223 | 217 218 215 219 222 | xrltletrd | |- ( ( ph /\ n e. ( 1 ... L ) ) -> -oo < sup ( ran S , RR* , < ) ) |
| 224 | 104 13 | sylan2 | |- ( ( ph /\ n e. ( 1 ... L ) ) -> sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
| 225 | xrre | |- ( ( ( sup ( ran S , RR* , < ) e. RR* /\ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) e. RR ) /\ ( -oo < sup ( ran S , RR* , < ) /\ sup ( ran S , RR* , < ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) ) -> sup ( ran S , RR* , < ) e. RR ) |
|
| 226 | 215 207 223 224 225 | syl22anc | |- ( ( ph /\ n e. ( 1 ... L ) ) -> sup ( ran S , RR* , < ) e. RR ) |
| 227 | 1zzd | |- ( ( ph /\ n e. ( 1 ... L ) ) -> 1 e. ZZ ) |
|
| 228 | 208 | ovolfsval | |- ( ( ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) /\ i e. NN ) -> ( ( ( abs o. - ) o. ( F ` n ) ) ` i ) = ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
| 229 | 185 228 | sylan | |- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( ( abs o. - ) o. ( F ` n ) ) ` i ) = ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
| 230 | 208 | ovolfsf | |- ( ( F ` n ) : NN --> ( <_ i^i ( RR X. RR ) ) -> ( ( abs o. - ) o. ( F ` n ) ) : NN --> ( 0 [,) +oo ) ) |
| 231 | 185 230 | syl | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( ( abs o. - ) o. ( F ` n ) ) : NN --> ( 0 [,) +oo ) ) |
| 232 | 231 | ffvelcdmda | |- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( ( abs o. - ) o. ( F ` n ) ) ` i ) e. ( 0 [,) +oo ) ) |
| 233 | 229 232 | eqeltrrd | |- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. ( 0 [,) +oo ) ) |
| 234 | elrege0 | |- ( ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. ( 0 [,) +oo ) <-> ( ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR /\ 0 <_ ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) ) |
|
| 235 | 233 234 | sylib | |- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR /\ 0 <_ ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) ) |
| 236 | 235 | simpld | |- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. RR ) |
| 237 | 235 | simprd | |- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ i e. NN ) -> 0 <_ ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
| 238 | supxrub | |- ( ( ran S C_ RR* /\ z e. ran S ) -> z <_ sup ( ran S , RR* , < ) ) |
|
| 239 | 213 238 | sylan | |- ( ( ( ph /\ n e. ( 1 ... L ) ) /\ z e. ran S ) -> z <_ sup ( ran S , RR* , < ) ) |
| 240 | 239 | ralrimiva | |- ( ( ph /\ n e. ( 1 ... L ) ) -> A. z e. ran S z <_ sup ( ran S , RR* , < ) ) |
| 241 | brralrspcev | |- ( ( sup ( ran S , RR* , < ) e. RR /\ A. z e. ran S z <_ sup ( ran S , RR* , < ) ) -> E. x e. RR A. z e. ran S z <_ x ) |
|
| 242 | 226 240 241 | syl2anc | |- ( ( ph /\ n e. ( 1 ... L ) ) -> E. x e. RR A. z e. ran S z <_ x ) |
| 243 | 210 | ffnd | |- ( ( ph /\ n e. ( 1 ... L ) ) -> S Fn NN ) |
| 244 | breq1 | |- ( z = ( S ` k ) -> ( z <_ x <-> ( S ` k ) <_ x ) ) |
|
| 245 | 244 | ralrn | |- ( S Fn NN -> ( A. z e. ran S z <_ x <-> A. k e. NN ( S ` k ) <_ x ) ) |
| 246 | 243 245 | syl | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( A. z e. ran S z <_ x <-> A. k e. NN ( S ` k ) <_ x ) ) |
| 247 | 246 | rexbidv | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( E. x e. RR A. z e. ran S z <_ x <-> E. x e. RR A. k e. NN ( S ` k ) <_ x ) ) |
| 248 | 242 247 | mpbid | |- ( ( ph /\ n e. ( 1 ... L ) ) -> E. x e. RR A. k e. NN ( S ` k ) <_ x ) |
| 249 | 81 7 227 229 236 237 248 | isumsup2 | |- ( ( ph /\ n e. ( 1 ... L ) ) -> S ~~> sup ( ran S , RR , < ) ) |
| 250 | 7 249 | eqbrtrrid | |- ( ( ph /\ n e. ( 1 ... L ) ) -> seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) ~~> sup ( ran S , RR , < ) ) |
| 251 | climrel | |- Rel ~~> |
|
| 252 | 251 | releldmi | |- ( seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) ~~> sup ( ran S , RR , < ) -> seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) e. dom ~~> ) |
| 253 | 250 252 | syl | |- ( ( ph /\ n e. ( 1 ... L ) ) -> seq 1 ( + , ( ( abs o. - ) o. ( F ` n ) ) ) e. dom ~~> ) |
| 254 | 81 227 181 193 229 236 237 253 | isumless | |- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) <_ sum_ i e. NN ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
| 255 | 81 7 227 229 236 237 248 | isumsup | |- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. NN ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) = sup ( ran S , RR , < ) ) |
| 256 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 257 | 211 256 | sstrdi | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ran S C_ RR ) |
| 258 | 1nn | |- 1 e. NN |
|
| 259 | 210 | fdmd | |- ( ( ph /\ n e. ( 1 ... L ) ) -> dom S = NN ) |
| 260 | 258 259 | eleqtrrid | |- ( ( ph /\ n e. ( 1 ... L ) ) -> 1 e. dom S ) |
| 261 | 260 | ne0d | |- ( ( ph /\ n e. ( 1 ... L ) ) -> dom S =/= (/) ) |
| 262 | dm0rn0 | |- ( dom S = (/) <-> ran S = (/) ) |
|
| 263 | 262 | necon3bii | |- ( dom S =/= (/) <-> ran S =/= (/) ) |
| 264 | 261 263 | sylib | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ran S =/= (/) ) |
| 265 | supxrre | |- ( ( ran S C_ RR /\ ran S =/= (/) /\ E. x e. RR A. z e. ran S z <_ x ) -> sup ( ran S , RR* , < ) = sup ( ran S , RR , < ) ) |
|
| 266 | 257 264 242 265 | syl3anc | |- ( ( ph /\ n e. ( 1 ... L ) ) -> sup ( ran S , RR* , < ) = sup ( ran S , RR , < ) ) |
| 267 | 255 266 | eqtr4d | |- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. NN ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) = sup ( ran S , RR* , < ) ) |
| 268 | 254 267 | breqtrd | |- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) <_ sup ( ran S , RR* , < ) ) |
| 269 | 204 226 207 268 224 | letrd | |- ( ( ph /\ n e. ( 1 ... L ) ) -> sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) <_ ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
| 270 | 103 204 207 269 | fsumle | |- ( ph -> sum_ n e. ( 1 ... L ) sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) <_ sum_ n e. ( 1 ... L ) ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) ) |
| 271 | vex | |- i e. _V |
|
| 272 | 123 271 | op1std | |- ( j = <. n , i >. -> ( 1st ` j ) = n ) |
| 273 | 272 | fveq2d | |- ( j = <. n , i >. -> ( F ` ( 1st ` j ) ) = ( F ` n ) ) |
| 274 | 123 271 | op2ndd | |- ( j = <. n , i >. -> ( 2nd ` j ) = i ) |
| 275 | 273 274 | fveq12d | |- ( j = <. n , i >. -> ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) = ( ( F ` n ) ` i ) ) |
| 276 | 275 | fveq2d | |- ( j = <. n , i >. -> ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) = ( 2nd ` ( ( F ` n ) ` i ) ) ) |
| 277 | 275 | fveq2d | |- ( j = <. n , i >. -> ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) = ( 1st ` ( ( F ` n ) ` i ) ) ) |
| 278 | 276 277 | oveq12d | |- ( j = <. n , i >. -> ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) ) |
| 279 | 202 | recnd | |- ( ( ph /\ ( n e. ( 1 ... L ) /\ i e. ( ( J " ( 1 ... K ) ) " { n } ) ) ) -> ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) e. CC ) |
| 280 | 278 103 181 279 | fsum2d | |- ( ph -> sum_ n e. ( 1 ... L ) sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) = sum_ j e. U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) ) |
| 281 | 170 | sumeq1d | |- ( ph -> sum_ j e. U_ n e. ( 1 ... L ) ( { n } X. ( ( J " ( 1 ... K ) ) " { n } ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) = sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) ) |
| 282 | 280 281 | eqtrd | |- ( ph -> sum_ n e. ( 1 ... L ) sum_ i e. ( ( J " ( 1 ... K ) ) " { n } ) ( ( 2nd ` ( ( F ` n ) ` i ) ) - ( 1st ` ( ( F ` n ) ` i ) ) ) = sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) ) |
| 283 | 105 | recnd | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( vol* ` A ) e. CC ) |
| 284 | 114 | recnd | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( B / ( 2 ^ n ) ) e. CC ) |
| 285 | 103 283 284 | fsumadd | |- ( ph -> sum_ n e. ( 1 ... L ) ( ( vol* ` A ) + ( B / ( 2 ^ n ) ) ) = ( sum_ n e. ( 1 ... L ) ( vol* ` A ) + sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) ) ) |
| 286 | 270 282 285 | 3brtr3d | |- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) <_ ( sum_ n e. ( 1 ... L ) ( vol* ` A ) + sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) ) ) |
| 287 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 288 | simpr | |- ( ( ph /\ n e. NN ) -> n e. NN ) |
|
| 289 | 2 | fvmpt2 | |- ( ( n e. NN /\ ( vol* ` A ) e. RR ) -> ( G ` n ) = ( vol* ` A ) ) |
| 290 | 288 4 289 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( G ` n ) = ( vol* ` A ) ) |
| 291 | 290 4 | eqeltrd | |- ( ( ph /\ n e. NN ) -> ( G ` n ) e. RR ) |
| 292 | 81 287 291 | serfre | |- ( ph -> seq 1 ( + , G ) : NN --> RR ) |
| 293 | 1 | feq1i | |- ( T : NN --> RR <-> seq 1 ( + , G ) : NN --> RR ) |
| 294 | 292 293 | sylibr | |- ( ph -> T : NN --> RR ) |
| 295 | 294 | frnd | |- ( ph -> ran T C_ RR ) |
| 296 | ressxr | |- RR C_ RR* |
|
| 297 | 295 296 | sstrdi | |- ( ph -> ran T C_ RR* ) |
| 298 | 104 290 | sylan2 | |- ( ( ph /\ n e. ( 1 ... L ) ) -> ( G ` n ) = ( vol* ` A ) ) |
| 299 | 1red | |- ( ph -> 1 e. RR ) |
|
| 300 | ffvelcdm | |- ( ( J : NN --> ( NN X. NN ) /\ 1 e. NN ) -> ( J ` 1 ) e. ( NN X. NN ) ) |
|
| 301 | 34 258 300 | sylancl | |- ( ph -> ( J ` 1 ) e. ( NN X. NN ) ) |
| 302 | xp1st | |- ( ( J ` 1 ) e. ( NN X. NN ) -> ( 1st ` ( J ` 1 ) ) e. NN ) |
|
| 303 | 301 302 | syl | |- ( ph -> ( 1st ` ( J ` 1 ) ) e. NN ) |
| 304 | 303 | nnred | |- ( ph -> ( 1st ` ( J ` 1 ) ) e. RR ) |
| 305 | 15 | zred | |- ( ph -> L e. RR ) |
| 306 | 303 | nnge1d | |- ( ph -> 1 <_ ( 1st ` ( J ` 1 ) ) ) |
| 307 | 2fveq3 | |- ( w = 1 -> ( 1st ` ( J ` w ) ) = ( 1st ` ( J ` 1 ) ) ) |
|
| 308 | 307 | breq1d | |- ( w = 1 -> ( ( 1st ` ( J ` w ) ) <_ L <-> ( 1st ` ( J ` 1 ) ) <_ L ) ) |
| 309 | eluzfz1 | |- ( K e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... K ) ) |
|
| 310 | 82 309 | syl | |- ( ph -> 1 e. ( 1 ... K ) ) |
| 311 | 308 16 310 | rspcdva | |- ( ph -> ( 1st ` ( J ` 1 ) ) <_ L ) |
| 312 | 299 304 305 306 311 | letrd | |- ( ph -> 1 <_ L ) |
| 313 | elnnz1 | |- ( L e. NN <-> ( L e. ZZ /\ 1 <_ L ) ) |
|
| 314 | 15 312 313 | sylanbrc | |- ( ph -> L e. NN ) |
| 315 | 314 81 | eleqtrdi | |- ( ph -> L e. ( ZZ>= ` 1 ) ) |
| 316 | 298 315 283 | fsumser | |- ( ph -> sum_ n e. ( 1 ... L ) ( vol* ` A ) = ( seq 1 ( + , G ) ` L ) ) |
| 317 | seqfn | |- ( 1 e. ZZ -> seq 1 ( + , G ) Fn ( ZZ>= ` 1 ) ) |
|
| 318 | 287 317 | syl | |- ( ph -> seq 1 ( + , G ) Fn ( ZZ>= ` 1 ) ) |
| 319 | fnfvelrn | |- ( ( seq 1 ( + , G ) Fn ( ZZ>= ` 1 ) /\ L e. ( ZZ>= ` 1 ) ) -> ( seq 1 ( + , G ) ` L ) e. ran seq 1 ( + , G ) ) |
|
| 320 | 318 315 319 | syl2anc | |- ( ph -> ( seq 1 ( + , G ) ` L ) e. ran seq 1 ( + , G ) ) |
| 321 | 1 | rneqi | |- ran T = ran seq 1 ( + , G ) |
| 322 | 320 321 | eleqtrrdi | |- ( ph -> ( seq 1 ( + , G ) ` L ) e. ran T ) |
| 323 | 316 322 | eqeltrd | |- ( ph -> sum_ n e. ( 1 ... L ) ( vol* ` A ) e. ran T ) |
| 324 | supxrub | |- ( ( ran T C_ RR* /\ sum_ n e. ( 1 ... L ) ( vol* ` A ) e. ran T ) -> sum_ n e. ( 1 ... L ) ( vol* ` A ) <_ sup ( ran T , RR* , < ) ) |
|
| 325 | 297 323 324 | syl2anc | |- ( ph -> sum_ n e. ( 1 ... L ) ( vol* ` A ) <_ sup ( ran T , RR* , < ) ) |
| 326 | 107 | recnd | |- ( ph -> B e. CC ) |
| 327 | geo2sum | |- ( ( L e. NN /\ B e. CC ) -> sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) = ( B - ( B / ( 2 ^ L ) ) ) ) |
|
| 328 | 314 326 327 | syl2anc | |- ( ph -> sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) = ( B - ( B / ( 2 ^ L ) ) ) ) |
| 329 | 314 | nnnn0d | |- ( ph -> L e. NN0 ) |
| 330 | nnexpcl | |- ( ( 2 e. NN /\ L e. NN0 ) -> ( 2 ^ L ) e. NN ) |
|
| 331 | 108 329 330 | sylancr | |- ( ph -> ( 2 ^ L ) e. NN ) |
| 332 | 331 | nnrpd | |- ( ph -> ( 2 ^ L ) e. RR+ ) |
| 333 | 6 332 | rpdivcld | |- ( ph -> ( B / ( 2 ^ L ) ) e. RR+ ) |
| 334 | 333 | rpge0d | |- ( ph -> 0 <_ ( B / ( 2 ^ L ) ) ) |
| 335 | 107 331 | nndivred | |- ( ph -> ( B / ( 2 ^ L ) ) e. RR ) |
| 336 | 107 335 | subge02d | |- ( ph -> ( 0 <_ ( B / ( 2 ^ L ) ) <-> ( B - ( B / ( 2 ^ L ) ) ) <_ B ) ) |
| 337 | 334 336 | mpbid | |- ( ph -> ( B - ( B / ( 2 ^ L ) ) ) <_ B ) |
| 338 | 328 337 | eqbrtrd | |- ( ph -> sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) <_ B ) |
| 339 | 106 115 5 107 325 338 | le2addd | |- ( ph -> ( sum_ n e. ( 1 ... L ) ( vol* ` A ) + sum_ n e. ( 1 ... L ) ( B / ( 2 ^ n ) ) ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
| 340 | 102 116 117 286 339 | letrd | |- ( ph -> sum_ j e. ( J " ( 1 ... K ) ) ( ( 2nd ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) - ( 1st ` ( ( F ` ( 1st ` j ) ) ` ( 2nd ` j ) ) ) ) <_ ( sup ( ran T , RR* , < ) + B ) ) |
| 341 | 96 340 | eqbrtrrd | |- ( ph -> ( U ` K ) <_ ( sup ( ran T , RR* , < ) + B ) ) |