This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restriction is a relation. Exercise 12 of TakeutiZaring p. 25. (Contributed by NM, 2-Aug-1994) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | relres | ⊢ Rel ( 𝐴 ↾ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res | ⊢ ( 𝐴 ↾ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 × V ) ) | |
| 2 | inss2 | ⊢ ( 𝐴 ∩ ( 𝐵 × V ) ) ⊆ ( 𝐵 × V ) | |
| 3 | 1 2 | eqsstri | ⊢ ( 𝐴 ↾ 𝐵 ) ⊆ ( 𝐵 × V ) |
| 4 | relxp | ⊢ Rel ( 𝐵 × V ) | |
| 5 | relss | ⊢ ( ( 𝐴 ↾ 𝐵 ) ⊆ ( 𝐵 × V ) → ( Rel ( 𝐵 × V ) → Rel ( 𝐴 ↾ 𝐵 ) ) ) | |
| 6 | 3 4 5 | mp2 | ⊢ Rel ( 𝐴 ↾ 𝐵 ) |