This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for Cartesian product over indexed union. (Contributed by Mario Carneiro, 27-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpiundir | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 × 𝐶 ) = ∪ 𝑥 ∈ 𝐴 ( 𝐵 × 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexcom4 | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) ) | |
| 2 | df-rex | ⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ↔ ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) ) | |
| 3 | 2 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) ) |
| 4 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
| 5 | 4 | anbi1i | ⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) ) |
| 6 | r19.41v | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) ↔ ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) ) | |
| 7 | 5 6 | bitr4i | ⊢ ( ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) ↔ ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) ) |
| 8 | 7 | exbii | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) ↔ ∃ 𝑦 ∃ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 ∧ ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) ) |
| 9 | 1 3 8 | 3bitr4ri | ⊢ ( ∃ 𝑦 ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) |
| 10 | df-rex | ⊢ ( ∃ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ↔ ∃ 𝑦 ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∧ ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) ) | |
| 11 | elxp2 | ⊢ ( 𝑧 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) | |
| 12 | 11 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ( 𝐵 × 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) |
| 13 | 9 10 12 | 3bitr4i | ⊢ ( ∃ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ( 𝐵 × 𝐶 ) ) |
| 14 | elxp2 | ⊢ ( 𝑧 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 × 𝐶 ) ↔ ∃ 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ∃ 𝑤 ∈ 𝐶 𝑧 = 〈 𝑦 , 𝑤 〉 ) | |
| 15 | eliun | ⊢ ( 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 × 𝐶 ) ↔ ∃ 𝑥 ∈ 𝐴 𝑧 ∈ ( 𝐵 × 𝐶 ) ) | |
| 16 | 13 14 15 | 3bitr4i | ⊢ ( 𝑧 ∈ ( ∪ 𝑥 ∈ 𝐴 𝐵 × 𝐶 ) ↔ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( 𝐵 × 𝐶 ) ) |
| 17 | 16 | eqriv | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 × 𝐶 ) = ∪ 𝑥 ∈ 𝐴 ( 𝐵 × 𝐶 ) |