This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004) (Proof shortened by Mario Carneiro, 16-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnnz1 | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 2 | nnge1 | ⊢ ( 𝑁 ∈ ℕ → 1 ≤ 𝑁 ) | |
| 3 | 1 2 | jca | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) ) |
| 4 | 0lt1 | ⊢ 0 < 1 | |
| 5 | 0re | ⊢ 0 ∈ ℝ | |
| 6 | 1re | ⊢ 1 ∈ ℝ | |
| 7 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 8 | ltletr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 ≤ 𝑁 ) → 0 < 𝑁 ) ) | |
| 9 | 5 6 7 8 | mp3an12i | ⊢ ( 𝑁 ∈ ℤ → ( ( 0 < 1 ∧ 1 ≤ 𝑁 ) → 0 < 𝑁 ) ) |
| 10 | 4 9 | mpani | ⊢ ( 𝑁 ∈ ℤ → ( 1 ≤ 𝑁 → 0 < 𝑁 ) ) |
| 11 | 10 | imdistani | ⊢ ( ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) → ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) |
| 12 | elnnz | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 0 < 𝑁 ) ) | |
| 13 | 11 12 | sylibr | ⊢ ( ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) → 𝑁 ∈ ℕ ) |
| 14 | 3 13 | impbii | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℤ ∧ 1 ≤ 𝑁 ) ) |