This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue outer measure function is countably sub-additive. (Many books allow +oo as a value for one of the sets in the sum, but in our setup we can't do arithmetic on infinity, and in any case the volume of a union containing an infinitely large set is already infinitely large by monotonicity ovolss , so we need not consider this case here, although we do allow the sum itself to be infinite.) (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovoliun.t | ⊢ 𝑇 = seq 1 ( + , 𝐺 ) | |
| ovoliun.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) | ||
| ovoliun.a | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) | ||
| ovoliun.v | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) | ||
| Assertion | ovoliun | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovoliun.t | ⊢ 𝑇 = seq 1 ( + , 𝐺 ) | |
| 2 | ovoliun.g | ⊢ 𝐺 = ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) | |
| 3 | ovoliun.a | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐴 ⊆ ℝ ) | |
| 4 | ovoliun.v | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( vol* ‘ 𝐴 ) ∈ ℝ ) | |
| 5 | mnfxr | ⊢ -∞ ∈ ℝ* | |
| 6 | 5 | a1i | ⊢ ( 𝜑 → -∞ ∈ ℝ* ) |
| 7 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 8 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 9 | 4 2 | fmptd | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ℝ ) |
| 10 | 9 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 11 | 7 8 10 | serfre | ⊢ ( 𝜑 → seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
| 12 | 1 | feq1i | ⊢ ( 𝑇 : ℕ ⟶ ℝ ↔ seq 1 ( + , 𝐺 ) : ℕ ⟶ ℝ ) |
| 13 | 11 12 | sylibr | ⊢ ( 𝜑 → 𝑇 : ℕ ⟶ ℝ ) |
| 14 | 1nn | ⊢ 1 ∈ ℕ | |
| 15 | ffvelcdm | ⊢ ( ( 𝑇 : ℕ ⟶ ℝ ∧ 1 ∈ ℕ ) → ( 𝑇 ‘ 1 ) ∈ ℝ ) | |
| 16 | 13 14 15 | sylancl | ⊢ ( 𝜑 → ( 𝑇 ‘ 1 ) ∈ ℝ ) |
| 17 | 16 | rexrd | ⊢ ( 𝜑 → ( 𝑇 ‘ 1 ) ∈ ℝ* ) |
| 18 | 13 | frnd | ⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ ) |
| 19 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 20 | 18 19 | sstrdi | ⊢ ( 𝜑 → ran 𝑇 ⊆ ℝ* ) |
| 21 | supxrcl | ⊢ ( ran 𝑇 ⊆ ℝ* → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* ) | |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* ) |
| 23 | 16 | mnfltd | ⊢ ( 𝜑 → -∞ < ( 𝑇 ‘ 1 ) ) |
| 24 | 13 | ffnd | ⊢ ( 𝜑 → 𝑇 Fn ℕ ) |
| 25 | fnfvelrn | ⊢ ( ( 𝑇 Fn ℕ ∧ 1 ∈ ℕ ) → ( 𝑇 ‘ 1 ) ∈ ran 𝑇 ) | |
| 26 | 24 14 25 | sylancl | ⊢ ( 𝜑 → ( 𝑇 ‘ 1 ) ∈ ran 𝑇 ) |
| 27 | supxrub | ⊢ ( ( ran 𝑇 ⊆ ℝ* ∧ ( 𝑇 ‘ 1 ) ∈ ran 𝑇 ) → ( 𝑇 ‘ 1 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) | |
| 28 | 20 26 27 | syl2anc | ⊢ ( 𝜑 → ( 𝑇 ‘ 1 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 29 | 6 17 22 23 28 | xrltletrd | ⊢ ( 𝜑 → -∞ < sup ( ran 𝑇 , ℝ* , < ) ) |
| 30 | xrrebnd | ⊢ ( sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* → ( sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ↔ ( -∞ < sup ( ran 𝑇 , ℝ* , < ) ∧ sup ( ran 𝑇 , ℝ* , < ) < +∞ ) ) ) | |
| 31 | 22 30 | syl | ⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ↔ ( -∞ < sup ( ran 𝑇 , ℝ* , < ) ∧ sup ( ran 𝑇 , ℝ* , < ) < +∞ ) ) ) |
| 32 | 29 31 | mpbirand | ⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ↔ sup ( ran 𝑇 , ℝ* , < ) < +∞ ) ) |
| 33 | nfcv | ⊢ Ⅎ 𝑚 𝐴 | |
| 34 | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 | |
| 35 | csbeq1a | ⊢ ( 𝑛 = 𝑚 → 𝐴 = ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) | |
| 36 | 33 34 35 | cbviun | ⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 |
| 37 | 36 | fveq2i | ⊢ ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) = ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 38 | nfcv | ⊢ Ⅎ 𝑚 ( vol* ‘ 𝐴 ) | |
| 39 | nfcv | ⊢ Ⅎ 𝑛 vol* | |
| 40 | 39 34 | nffv | ⊢ Ⅎ 𝑛 ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) |
| 41 | 35 | fveq2d | ⊢ ( 𝑛 = 𝑚 → ( vol* ‘ 𝐴 ) = ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 42 | 38 40 41 | cbvmpt | ⊢ ( 𝑛 ∈ ℕ ↦ ( vol* ‘ 𝐴 ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 43 | 2 42 | eqtri | ⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ) |
| 44 | 3 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ) |
| 45 | nfv | ⊢ Ⅎ 𝑚 𝐴 ⊆ ℝ | |
| 46 | nfcv | ⊢ Ⅎ 𝑛 ℝ | |
| 47 | 34 46 | nfss | ⊢ Ⅎ 𝑛 ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ |
| 48 | 35 | sseq1d | ⊢ ( 𝑛 = 𝑚 → ( 𝐴 ⊆ ℝ ↔ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) ) |
| 49 | 45 47 48 | cbvralw | ⊢ ( ∀ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 50 | 44 49 | sylib | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 51 | 50 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 52 | 51 | r19.21bi | ⊢ ( ( ( ( 𝜑 ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ⊆ ℝ ) |
| 53 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ∈ ℝ ) |
| 54 | 38 | nfel1 | ⊢ Ⅎ 𝑚 ( vol* ‘ 𝐴 ) ∈ ℝ |
| 55 | 40 | nfel1 | ⊢ Ⅎ 𝑛 ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ |
| 56 | 41 | eleq1d | ⊢ ( 𝑛 = 𝑚 → ( ( vol* ‘ 𝐴 ) ∈ ℝ ↔ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) ) |
| 57 | 54 55 56 | cbvralw | ⊢ ( ∀ 𝑛 ∈ ℕ ( vol* ‘ 𝐴 ) ∈ ℝ ↔ ∀ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 58 | 53 57 | sylib | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 59 | 58 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑚 ∈ ℕ ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 60 | 59 | r19.21bi | ⊢ ( ( ( ( 𝜑 ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ∈ ℝ ) |
| 61 | simplr | ⊢ ( ( ( 𝜑 ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) | |
| 62 | simpr | ⊢ ( ( ( 𝜑 ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) | |
| 63 | 1 43 52 60 61 62 | ovoliunlem3 | ⊢ ( ( ( 𝜑 ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ⦋ 𝑚 / 𝑛 ⦌ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝑥 ) ) |
| 64 | 37 63 | eqbrtrid | ⊢ ( ( ( 𝜑 ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝑥 ) ) |
| 65 | 64 | ralrimiva | ⊢ ( ( 𝜑 ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) → ∀ 𝑥 ∈ ℝ+ ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝑥 ) ) |
| 66 | iunss | ⊢ ( ∪ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ↔ ∀ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ) | |
| 67 | 44 66 | sylibr | ⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ ) |
| 68 | ovolcl | ⊢ ( ∪ 𝑛 ∈ ℕ 𝐴 ⊆ ℝ → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ∈ ℝ* ) | |
| 69 | 67 68 | syl | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ∈ ℝ* ) |
| 70 | xralrple | ⊢ ( ( ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ∈ ℝ* ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) → ( ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ↔ ∀ 𝑥 ∈ ℝ+ ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝑥 ) ) ) | |
| 71 | 69 70 | sylan | ⊢ ( ( 𝜑 ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) → ( ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ↔ ∀ 𝑥 ∈ ℝ+ ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ ( sup ( ran 𝑇 , ℝ* , < ) + 𝑥 ) ) ) |
| 72 | 65 71 | mpbird | ⊢ ( ( 𝜑 ∧ sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ ) → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |
| 73 | 72 | ex | ⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) ) |
| 74 | 32 73 | sylbird | ⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) < +∞ → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) ) |
| 75 | nltpnft | ⊢ ( sup ( ran 𝑇 , ℝ* , < ) ∈ ℝ* → ( sup ( ran 𝑇 , ℝ* , < ) = +∞ ↔ ¬ sup ( ran 𝑇 , ℝ* , < ) < +∞ ) ) | |
| 76 | 22 75 | syl | ⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) = +∞ ↔ ¬ sup ( ran 𝑇 , ℝ* , < ) < +∞ ) ) |
| 77 | pnfge | ⊢ ( ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ∈ ℝ* → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ +∞ ) | |
| 78 | 69 77 | syl | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ +∞ ) |
| 79 | breq2 | ⊢ ( sup ( ran 𝑇 , ℝ* , < ) = +∞ → ( ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ↔ ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ +∞ ) ) | |
| 80 | 78 79 | syl5ibrcom | ⊢ ( 𝜑 → ( sup ( ran 𝑇 , ℝ* , < ) = +∞ → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) ) |
| 81 | 76 80 | sylbird | ⊢ ( 𝜑 → ( ¬ sup ( ran 𝑇 , ℝ* , < ) < +∞ → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) ) |
| 82 | 74 81 | pm2.61d | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑛 ∈ ℕ 𝐴 ) ≤ sup ( ran 𝑇 , ℝ* , < ) ) |