This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write a double sum as a sum over a two-dimensional region. Note that B ( j ) is a function of j . (Contributed by Mario Carneiro, 27-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsum2d.1 | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝐷 = 𝐶 ) | |
| fsum2d.2 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| fsum2d.3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | ||
| fsum2d.4 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) | ||
| Assertion | fsum2d | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsum2d.1 | ⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝐷 = 𝐶 ) | |
| 2 | fsum2d.2 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 3 | fsum2d.3 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | |
| 4 | fsum2d.4 | ⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) | |
| 5 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 6 | sseq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) | |
| 7 | sumeq1 | ⊢ ( 𝑤 = ∅ → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑗 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 ) | |
| 8 | iuneq1 | ⊢ ( 𝑤 = ∅ → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) ) | |
| 9 | 8 | sumeq1d | ⊢ ( 𝑤 = ∅ → Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 10 | 7 9 | eqeq12d | ⊢ ( 𝑤 = ∅ → ( Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ Σ 𝑗 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 11 | 6 10 | imbi12d | ⊢ ( 𝑤 = ∅ → ( ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( ∅ ⊆ 𝐴 → Σ 𝑗 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑤 = ∅ → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( ∅ ⊆ 𝐴 → Σ 𝑗 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 13 | sseq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴 ) ) | |
| 14 | sumeq1 | ⊢ ( 𝑤 = 𝑥 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 ) | |
| 15 | iuneq1 | ⊢ ( 𝑤 = 𝑥 → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) ) | |
| 16 | 15 | sumeq1d | ⊢ ( 𝑤 = 𝑥 → Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 17 | 14 16 | eqeq12d | ⊢ ( 𝑤 = 𝑥 → ( Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 18 | 13 17 | imbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( 𝑥 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( 𝑥 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 20 | sseq1 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( 𝑤 ⊆ 𝐴 ↔ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ) | |
| 21 | sumeq1 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 ) | |
| 22 | iuneq1 | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) ) | |
| 23 | 22 | sumeq1d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 24 | 21 23 | eqeq12d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 25 | 20 24 | imbi12d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 26 | 25 | imbi2d | ⊢ ( 𝑤 = ( 𝑥 ∪ { 𝑦 } ) → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 27 | sseq1 | ⊢ ( 𝑤 = 𝐴 → ( 𝑤 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 28 | sumeq1 | ⊢ ( 𝑤 = 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 ) | |
| 29 | iuneq1 | ⊢ ( 𝑤 = 𝐴 → ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) | |
| 30 | 29 | sumeq1d | ⊢ ( 𝑤 = 𝐴 → Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 31 | 28 30 | eqeq12d | ⊢ ( 𝑤 = 𝐴 → ( Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 32 | 27 31 | imbi12d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ↔ ( 𝐴 ⊆ 𝐴 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 33 | 32 | imbi2d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝜑 → ( 𝑤 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑤 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑤 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ↔ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 34 | sum0 | ⊢ Σ 𝑧 ∈ ∅ 𝐷 = 0 | |
| 35 | 0iun | ⊢ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) = ∅ | |
| 36 | 35 | sumeq1i | ⊢ Σ 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐷 = Σ 𝑧 ∈ ∅ 𝐷 |
| 37 | sum0 | ⊢ Σ 𝑗 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 = 0 | |
| 38 | 34 36 37 | 3eqtr4ri | ⊢ Σ 𝑗 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐷 |
| 39 | 38 | 2a1i | ⊢ ( 𝜑 → ( ∅ ⊆ 𝐴 → Σ 𝑗 ∈ ∅ Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ∅ ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 40 | ssun1 | ⊢ 𝑥 ⊆ ( 𝑥 ∪ { 𝑦 } ) | |
| 41 | sstr | ⊢ ( ( 𝑥 ⊆ ( 𝑥 ∪ { 𝑦 } ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝑥 ⊆ 𝐴 ) | |
| 42 | 40 41 | mpan | ⊢ ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → 𝑥 ⊆ 𝐴 ) |
| 43 | 42 | imim1i | ⊢ ( ( 𝑥 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 44 | simpll | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝜑 ) | |
| 45 | 44 2 | syl | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
| 46 | 44 3 | sylan | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
| 47 | 44 4 | sylan | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ℂ ) |
| 48 | simplr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ¬ 𝑦 ∈ 𝑥 ) | |
| 49 | simpr | ⊢ ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) → ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) | |
| 50 | biid | ⊢ ( Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ↔ Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) | |
| 51 | 1 45 46 47 48 49 50 | fsum2dlem | ⊢ ( ( ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) ∧ ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 ) ∧ Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) |
| 52 | 51 | exp31 | ⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → ( Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 53 | 52 | a2d | ⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 54 | 43 53 | syl5 | ⊢ ( ( 𝜑 ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝑥 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 55 | 54 | expcom | ⊢ ( ¬ 𝑦 ∈ 𝑥 → ( 𝜑 → ( ( 𝑥 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 56 | 55 | a2d | ⊢ ( ¬ 𝑦 ∈ 𝑥 → ( ( 𝜑 → ( 𝑥 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 57 | 56 | adantl | ⊢ ( ( 𝑥 ∈ Fin ∧ ¬ 𝑦 ∈ 𝑥 ) → ( ( 𝜑 → ( 𝑥 ⊆ 𝐴 → Σ 𝑗 ∈ 𝑥 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) → ( 𝜑 → ( ( 𝑥 ∪ { 𝑦 } ) ⊆ 𝐴 → Σ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ ( 𝑥 ∪ { 𝑦 } ) ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) ) |
| 58 | 12 19 26 33 39 57 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( 𝜑 → ( 𝐴 ⊆ 𝐴 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) ) |
| 59 | 2 58 | mpcom | ⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐴 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) ) |
| 60 | 5 59 | mpi | ⊢ ( 𝜑 → Σ 𝑗 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 𝐶 = Σ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐷 ) |