This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrre | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( -∞ < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( -∞ < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → -∞ < 𝐴 ) | |
| 2 | ltpnf | ⊢ ( 𝐵 ∈ ℝ → 𝐵 < +∞ ) | |
| 3 | 2 | adantl | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → 𝐵 < +∞ ) |
| 4 | rexr | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℝ* ) | |
| 5 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 6 | xrlelttr | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞ ) → 𝐴 < +∞ ) ) | |
| 7 | 5 6 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞ ) → 𝐴 < +∞ ) ) |
| 8 | 4 7 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < +∞ ) → 𝐴 < +∞ ) ) |
| 9 | 3 8 | mpan2d | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → 𝐴 < +∞ ) ) |
| 10 | 9 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → 𝐴 < +∞ ) |
| 11 | 10 | adantrl | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( -∞ < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 < +∞ ) |
| 12 | xrrebnd | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ∈ ℝ ↔ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) ) | |
| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( -∞ < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → ( 𝐴 ∈ ℝ ↔ ( -∞ < 𝐴 ∧ 𝐴 < +∞ ) ) ) |
| 14 | 1 11 13 | mpbir2and | ⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ) ∧ ( -∞ < 𝐴 ∧ 𝐴 ≤ 𝐵 ) ) → 𝐴 ∈ ℝ ) |