This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfi1fseq . This lemma is not as interesting as it is long - it is simply checking that G is in fact a sequence of simple functions, by verifying that its range is in ( 0 ... n 2 ^ n ) / ( 2 ^ n ) (which is to say, the numbers from 0 to n in increments of 1 / ( 2 ^ n ) ), and also that the preimage of each point k is measurable, because it is equal to ( -u n , n ) i^i (`' F " ( k [,) k + 1 / ( 2 ^ n ) ) ) for k < n and ( -u n , n ) i^i ( ``' F " ( k [,) +oo ) ) for k = n ` . (Contributed by Mario Carneiro, 16-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfi1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfi1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| mbfi1fseq.3 | ⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) | ||
| mbfi1fseq.4 | ⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) | ||
| Assertion | mbfi1fseqlem4 | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ dom ∫1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfi1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 3 | mbfi1fseq.3 | ⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) | |
| 4 | mbfi1fseq.4 | ⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) | |
| 5 | reex | ⊢ ℝ ∈ V | |
| 6 | 5 | mptex | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ∈ V |
| 7 | 6 4 | fnmpti | ⊢ 𝐺 Fn ℕ |
| 8 | 7 | a1i | ⊢ ( 𝜑 → 𝐺 Fn ℕ ) |
| 9 | 1 2 3 4 | mbfi1fseqlem3 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) : ℝ ⟶ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
| 10 | elfznn0 | ⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) → 𝑚 ∈ ℕ0 ) | |
| 11 | 10 | nn0red | ⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) → 𝑚 ∈ ℝ ) |
| 12 | 2nn | ⊢ 2 ∈ ℕ | |
| 13 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 14 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) | |
| 15 | 12 13 14 | sylancr | ⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 17 | nndivre | ⊢ ( ( 𝑚 ∈ ℝ ∧ ( 2 ↑ 𝑛 ) ∈ ℕ ) → ( 𝑚 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) | |
| 18 | 11 16 17 | syl2anr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑚 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 19 | 18 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ⟶ ℝ ) |
| 20 | 19 | frnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ⊆ ℝ ) |
| 21 | 9 20 | fssd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 22 | fzfid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ∈ Fin ) | |
| 23 | 19 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) Fn ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) |
| 24 | dffn4 | ⊢ ( ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) Fn ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↔ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) –onto→ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) | |
| 25 | 23 24 | sylib | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) –onto→ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
| 26 | fofi | ⊢ ( ( ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ∈ Fin ∧ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) : ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) –onto→ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) → ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ∈ Fin ) | |
| 27 | 22 25 26 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ∈ Fin ) |
| 28 | 9 | frnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝐺 ‘ 𝑛 ) ⊆ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
| 29 | 27 28 | ssfid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝐺 ‘ 𝑛 ) ∈ Fin ) |
| 30 | 1 2 3 4 | mbfi1fseqlem2 | ⊢ ( 𝑛 ∈ ℕ → ( 𝐺 ‘ 𝑛 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ) |
| 31 | 30 | fveq1d | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) ) |
| 32 | 31 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) ) |
| 33 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 34 | ovex | ⊢ ( 𝑛 𝐽 𝑥 ) ∈ V | |
| 35 | vex | ⊢ 𝑛 ∈ V | |
| 36 | 34 35 | ifex | ⊢ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ V |
| 37 | c0ex | ⊢ 0 ∈ V | |
| 38 | 36 37 | ifex | ⊢ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ V |
| 39 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) | |
| 40 | 39 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ V ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 41 | 33 38 40 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 42 | 32 41 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 43 | 42 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 44 | 43 | eqeq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) ) |
| 45 | eldifsni | ⊢ ( 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) → 𝑘 ≠ 0 ) | |
| 46 | 45 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ≠ 0 ) |
| 47 | neeq1 | ⊢ ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≠ 0 ↔ 𝑘 ≠ 0 ) ) | |
| 48 | 46 47 | syl5ibrcom | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≠ 0 ) ) |
| 49 | iffalse | ⊢ ( ¬ 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 0 ) | |
| 50 | 49 | necon1ai | ⊢ ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≠ 0 → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) |
| 51 | 48 50 | syl6 | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
| 52 | 51 | pm4.71rd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) ) ) |
| 53 | iftrue | ⊢ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) | |
| 54 | 53 | eqeq1d | ⊢ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ↔ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) ) |
| 55 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℕ ) | |
| 56 | 55 | nnred | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℝ ) |
| 57 | 56 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑛 ∈ ℝ ) |
| 58 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 59 | simpr | ⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 60 | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) | |
| 61 | 2 59 60 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 62 | 58 61 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 63 | nnnn0 | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) | |
| 64 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) | |
| 65 | 12 63 64 | sylancr | ⊢ ( 𝑚 ∈ ℕ → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 66 | 65 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 67 | 66 | nnred | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℝ ) |
| 68 | 62 67 | remulcld | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
| 69 | reflcl | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) | |
| 70 | 68 69 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) |
| 71 | 70 66 | nndivred | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
| 72 | 71 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
| 73 | 3 | fmpo | ⊢ ( ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ↔ 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ) |
| 74 | 72 73 | sylib | ⊢ ( 𝜑 → 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ) |
| 75 | fovcdm | ⊢ ( ( 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) | |
| 76 | 74 75 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) |
| 77 | 76 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) |
| 78 | 77 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) |
| 79 | 78 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 𝐽 𝑥 ) ∈ ℝ ) |
| 80 | lemin | ⊢ ( ( 𝑛 ∈ ℝ ∧ ( 𝑛 𝐽 𝑥 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ↔ ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ∧ 𝑛 ≤ 𝑛 ) ) ) | |
| 81 | 57 79 57 80 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ↔ ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ∧ 𝑛 ≤ 𝑛 ) ) ) |
| 82 | 79 57 | ifcld | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ ℝ ) |
| 83 | 82 57 | letri3d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑛 ↔ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ∧ 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) ) ) |
| 84 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑘 = 𝑛 ) | |
| 85 | 84 | eqeq2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑛 ) ) |
| 86 | min2 | ⊢ ( ( ( 𝑛 𝐽 𝑥 ) ∈ ℝ ∧ 𝑛 ∈ ℝ ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ) | |
| 87 | 79 57 86 | syl2anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ) |
| 88 | 87 | biantrurd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ↔ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ∧ 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) ) ) |
| 89 | 83 85 88 | 3bitr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ 𝑛 ≤ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ) ) |
| 90 | 57 | leidd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑛 ≤ 𝑛 ) |
| 91 | 90 | biantrud | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ↔ ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ∧ 𝑛 ≤ 𝑛 ) ) ) |
| 92 | 81 89 91 | 3bitr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ) ) |
| 93 | breq1 | ⊢ ( 𝑘 = 𝑛 → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 94 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 95 | 94 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 96 | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 97 | 95 96 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 98 | 97 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 99 | 98 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 100 | 55 15 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 101 | 100 | nnred | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ∈ ℝ ) |
| 102 | 99 101 | remulcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 103 | reflcl | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) | |
| 104 | 102 103 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 105 | 100 | nngt0d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 0 < ( 2 ↑ 𝑛 ) ) |
| 106 | lemuldiv | ⊢ ( ( 𝑛 ∈ ℝ ∧ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ↔ 𝑛 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) ) | |
| 107 | 56 104 101 105 106 | syl112anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ↔ 𝑛 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 108 | lemul1 | ⊢ ( ( 𝑛 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) | |
| 109 | 56 99 101 105 108 | syl112anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
| 110 | nnmulcl | ⊢ ( ( 𝑛 ∈ ℕ ∧ ( 2 ↑ 𝑛 ) ∈ ℕ ) → ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℕ ) | |
| 111 | 55 15 110 | syl2anc2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℕ ) |
| 112 | 111 | nnzd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
| 113 | flge | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ ∧ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) ) | |
| 114 | 102 112 113 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) ) |
| 115 | 109 114 | bitrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑛 · ( 2 ↑ 𝑛 ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) ) |
| 116 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 117 | simpr | ⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) | |
| 118 | 117 | fveq2d | ⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 119 | simpl | ⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → 𝑚 = 𝑛 ) | |
| 120 | 119 | oveq2d | ⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑛 ) ) |
| 121 | 118 120 | oveq12d | ⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) |
| 122 | 121 | fveq2d | ⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
| 123 | 122 120 | oveq12d | ⊢ ( ( 𝑚 = 𝑛 ∧ 𝑦 = 𝑥 ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) |
| 124 | ovex | ⊢ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ∈ V | |
| 125 | 123 3 124 | ovmpoa | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) |
| 126 | 55 116 125 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) |
| 127 | 126 | breq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ↔ 𝑛 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) ) ) |
| 128 | 107 115 127 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑛 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ) ) |
| 129 | 93 128 | sylan9bbr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ 𝑛 ≤ ( 𝑛 𝐽 𝑥 ) ) ) |
| 130 | 116 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑥 ∈ ℝ ) |
| 131 | iftrue | ⊢ ( 𝑘 = 𝑛 → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) = ℝ ) | |
| 132 | 131 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) = ℝ ) |
| 133 | 130 132 | eleqtrrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ) |
| 134 | 133 | biantrurd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 135 | 92 129 134 | 3bitr2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 = 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 136 | 28 | ssdifssd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ⊆ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
| 137 | 136 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) |
| 138 | eqid | ⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) = ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) | |
| 139 | 138 | rnmpt | ⊢ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) = { 𝑘 ∣ ∃ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) } |
| 140 | 139 | eqabri | ⊢ ( 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ↔ ∃ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) |
| 141 | elfzelz | ⊢ ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) → 𝑚 ∈ ℤ ) | |
| 142 | 141 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → 𝑚 ∈ ℤ ) |
| 143 | 142 | zcnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → 𝑚 ∈ ℂ ) |
| 144 | 15 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 145 | 144 | nncnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ∈ ℂ ) |
| 146 | 144 | nnne0d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 2 ↑ 𝑛 ) ≠ 0 ) |
| 147 | 143 145 146 | divcan1d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) = 𝑚 ) |
| 148 | 147 142 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
| 149 | oveq1 | ⊢ ( 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) = ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ) | |
| 150 | 149 | eleq1d | ⊢ ( 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ↔ ( ( 𝑚 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) ) |
| 151 | 148 150 | syl5ibrcom | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) ) |
| 152 | 151 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) 𝑘 = ( 𝑚 / ( 2 ↑ 𝑛 ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) ) |
| 153 | 140 152 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) ) |
| 154 | 153 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝑛 · ( 2 ↑ 𝑛 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝑛 ) ) ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
| 155 | 137 154 | syldan | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
| 156 | 155 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) |
| 157 | flbi | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∈ ℝ ∧ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) ) | |
| 158 | 102 156 157 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) ) |
| 159 | 158 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) ) |
| 160 | neeq1 | ⊢ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≠ 𝑛 ↔ 𝑘 ≠ 𝑛 ) ) | |
| 161 | 160 | biimparc | ⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≠ 𝑛 ) |
| 162 | iffalse | ⊢ ( ¬ ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑛 ) | |
| 163 | 162 | necon1ai | ⊢ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≠ 𝑛 → ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 ) |
| 164 | 161 163 | syl | ⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 ) |
| 165 | 164 | iftrued | ⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = ( 𝑛 𝐽 𝑥 ) ) |
| 166 | simpr | ⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) | |
| 167 | 165 166 | eqtr3d | ⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) = 𝑘 ) |
| 168 | 167 164 | eqbrtrrd | ⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → 𝑘 ≤ 𝑛 ) |
| 169 | 168 167 | jca | ⊢ ( ( 𝑘 ≠ 𝑛 ∧ if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) → ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) |
| 170 | 169 | ex | ⊢ ( 𝑘 ≠ 𝑛 → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 → ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) ) |
| 171 | breq1 | ⊢ ( ( 𝑛 𝐽 𝑥 ) = 𝑘 → ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 ↔ 𝑘 ≤ 𝑛 ) ) | |
| 172 | 171 | biimparc | ⊢ ( ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 ) |
| 173 | 172 | iftrued | ⊢ ( ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = ( 𝑛 𝐽 𝑥 ) ) |
| 174 | simpr | ⊢ ( ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → ( 𝑛 𝐽 𝑥 ) = 𝑘 ) | |
| 175 | 173 174 | eqtrd | ⊢ ( ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ) |
| 176 | 170 175 | impbid1 | ⊢ ( 𝑘 ≠ 𝑛 → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) ) |
| 177 | 176 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) ) |
| 178 | eldifi | ⊢ ( 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) → 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) ) | |
| 179 | nnre | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℝ ) | |
| 180 | 179 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℝ ) |
| 181 | 77 180 86 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ) |
| 182 | 13 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑛 ∈ ℕ0 ) |
| 183 | 182 | nn0ge0d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ 𝑛 ) |
| 184 | breq1 | ⊢ ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 ) ) | |
| 185 | breq1 | ⊢ ( 0 = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) → ( 0 ≤ 𝑛 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 ) ) | |
| 186 | 184 185 | ifboth | ⊢ ( ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ≤ 𝑛 ∧ 0 ≤ 𝑛 ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 ) |
| 187 | 181 183 186 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ≤ 𝑛 ) |
| 188 | 42 187 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) |
| 189 | 188 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) |
| 190 | 9 | ffnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) Fn ℝ ) |
| 191 | breq1 | ⊢ ( 𝑘 = ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) → ( 𝑘 ≤ 𝑛 ↔ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) ) | |
| 192 | 191 | ralrn | ⊢ ( ( 𝐺 ‘ 𝑛 ) Fn ℝ → ( ∀ 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) 𝑘 ≤ 𝑛 ↔ ∀ 𝑥 ∈ ℝ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) ) |
| 193 | 190 192 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ∀ 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) 𝑘 ≤ 𝑛 ↔ ∀ 𝑥 ∈ ℝ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) ≤ 𝑛 ) ) |
| 194 | 189 193 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∀ 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) 𝑘 ≤ 𝑛 ) |
| 195 | 194 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ran ( 𝐺 ‘ 𝑛 ) ) → 𝑘 ≤ 𝑛 ) |
| 196 | 178 195 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → 𝑘 ≤ 𝑛 ) |
| 197 | 196 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → 𝑘 ≤ 𝑛 ) |
| 198 | 197 | biantrurd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( 𝑘 ≤ 𝑛 ∧ ( 𝑛 𝐽 𝑥 ) = 𝑘 ) ) ) |
| 199 | 126 | eqeq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) = 𝑘 ) ) |
| 200 | 104 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 201 | 28 20 | sstrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ran ( 𝐺 ‘ 𝑛 ) ⊆ ℝ ) |
| 202 | 201 | ssdifssd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ⊆ ℝ ) |
| 203 | 202 | sselda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → 𝑘 ∈ ℝ ) |
| 204 | 203 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ∈ ℝ ) |
| 205 | 204 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ∈ ℂ ) |
| 206 | 100 | nncnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ∈ ℂ ) |
| 207 | 100 | nnne0d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝑛 ) ≠ 0 ) |
| 208 | 200 205 206 207 | divmul3d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) / ( 2 ↑ 𝑛 ) ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) ) |
| 209 | 199 208 | bitrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) ) |
| 210 | 209 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( 𝑛 𝐽 𝑥 ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) ) |
| 211 | 177 198 210 | 3bitr2d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) = ( 𝑘 · ( 2 ↑ 𝑛 ) ) ) ) |
| 212 | ifnefalse | ⊢ ( 𝑘 ≠ 𝑛 → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) = ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) | |
| 213 | 212 | eleq2d | ⊢ ( 𝑘 ≠ 𝑛 → ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ↔ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ) |
| 214 | 100 | nnrecred | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 1 / ( 2 ↑ 𝑛 ) ) ∈ ℝ ) |
| 215 | 204 214 | readdcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 216 | 215 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ* ) |
| 217 | elioomnf | ⊢ ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) | |
| 218 | 216 217 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 219 | 94 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 220 | 219 | ffnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝐹 Fn ℝ ) |
| 221 | elpreima | ⊢ ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ) | |
| 222 | 220 221 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ) |
| 223 | 116 222 | mpbirand | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 224 | 99 | biantrurd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 225 | 218 223 224 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 226 | ltmul1 | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) ) ) | |
| 227 | 99 215 101 105 226 | syl112anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) < ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) ) ) |
| 228 | 214 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 1 / ( 2 ↑ 𝑛 ) ) ∈ ℂ ) |
| 229 | 206 207 | recid2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 1 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) = 1 ) |
| 230 | 229 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + ( ( 1 / ( 2 ↑ 𝑛 ) ) · ( 2 ↑ 𝑛 ) ) ) = ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) |
| 231 | 205 206 228 230 | joinlmuladdmuld | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) = ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) |
| 232 | 231 | breq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) · ( 2 ↑ 𝑛 ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) |
| 233 | 225 227 232 | 3bitrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) |
| 234 | 213 233 | sylan9bbr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ↔ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) |
| 235 | lemul1 | ⊢ ( ( 𝑘 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( ( 2 ↑ 𝑛 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑛 ) ) ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) | |
| 236 | 204 99 101 105 235 | syl112anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
| 237 | 236 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) |
| 238 | 234 237 | anbi12d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ∧ ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ) ) ) |
| 239 | 238 | biancomd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝑛 ) ) < ( ( 𝑘 · ( 2 ↑ 𝑛 ) ) + 1 ) ) ) ) |
| 240 | 159 211 239 | 3bitr4d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ≠ 𝑛 ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 241 | 135 240 | pm2.61dane | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 242 | eldif | ⊢ ( 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) | |
| 243 | 204 | rexrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → 𝑘 ∈ ℝ* ) |
| 244 | elioomnf | ⊢ ( 𝑘 ∈ ℝ* → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) ) | |
| 245 | 243 244 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) ) |
| 246 | elpreima | ⊢ ( 𝐹 Fn ℝ → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ) ) ) | |
| 247 | 220 246 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ) ) ) |
| 248 | 116 247 | mpbirand | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( -∞ (,) 𝑘 ) ) ) |
| 249 | 99 | biantrurd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) < 𝑘 ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) ) |
| 250 | 245 248 249 | 3bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) |
| 251 | 250 | notbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) |
| 252 | 204 99 | lenltd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ¬ ( 𝐹 ‘ 𝑥 ) < 𝑘 ) ) |
| 253 | 251 252 | bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ↔ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 254 | 253 | anbi2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ ¬ 𝑥 ∈ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 255 | 242 254 | bitrid | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ↔ ( 𝑥 ∈ if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∧ 𝑘 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 256 | 241 255 | bitr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) = 𝑘 ↔ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) |
| 257 | 54 256 | sylan9bbr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) → ( if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ↔ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) |
| 258 | 257 | pm5.32da | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) |
| 259 | 44 52 258 | 3bitrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) |
| 260 | 259 | pm5.32da | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) ) |
| 261 | 21 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝐺 ‘ 𝑛 ) : ℝ ⟶ ℝ ) |
| 262 | 261 | ffnd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝐺 ‘ 𝑛 ) Fn ℝ ) |
| 263 | fniniseg | ⊢ ( ( 𝐺 ‘ 𝑛 ) Fn ℝ → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) ) ) | |
| 264 | 262 263 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) ) ) |
| 265 | elin | ⊢ ( 𝑥 ∈ ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) | |
| 266 | 179 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → 𝑛 ∈ ℝ ) |
| 267 | 266 | renegcld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → - 𝑛 ∈ ℝ ) |
| 268 | iccmbl | ⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) | |
| 269 | 267 266 268 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( - 𝑛 [,] 𝑛 ) ∈ dom vol ) |
| 270 | mblss | ⊢ ( ( - 𝑛 [,] 𝑛 ) ∈ dom vol → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) | |
| 271 | 269 270 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) |
| 272 | 271 | sseld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) → 𝑥 ∈ ℝ ) ) |
| 273 | 272 | adantrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) → 𝑥 ∈ ℝ ) ) |
| 274 | 273 | pm4.71rd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) ) |
| 275 | 265 274 | bitrid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ∧ 𝑥 ∈ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) ) |
| 276 | 260 264 275 | 3bitr4d | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ↔ 𝑥 ∈ ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) ) |
| 277 | 276 | eqrdv | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) = ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ) |
| 278 | rembl | ⊢ ℝ ∈ dom vol | |
| 279 | fss | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ ( 0 [,) +∞ ) ⊆ ℝ ) → 𝐹 : ℝ ⟶ ℝ ) | |
| 280 | 2 58 279 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 281 | mbfima | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ∈ dom vol ) | |
| 282 | 1 280 281 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ∈ dom vol ) |
| 283 | ifcl | ⊢ ( ( ℝ ∈ dom vol ∧ ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ∈ dom vol ) → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∈ dom vol ) | |
| 284 | 278 282 283 | sylancr | ⊢ ( 𝜑 → if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∈ dom vol ) |
| 285 | mbfima | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐹 : ℝ ⟶ ℝ ) → ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ∈ dom vol ) | |
| 286 | 1 280 285 | syl2anc | ⊢ ( 𝜑 → ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ∈ dom vol ) |
| 287 | difmbl | ⊢ ( ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ∈ dom vol ) → ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol ) | |
| 288 | 284 286 287 | syl2anc | ⊢ ( 𝜑 → ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol ) |
| 289 | 288 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol ) |
| 290 | inmbl | ⊢ ( ( ( - 𝑛 [,] 𝑛 ) ∈ dom vol ∧ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ∈ dom vol ) → ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ∈ dom vol ) | |
| 291 | 269 289 290 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( - 𝑛 [,] 𝑛 ) ∩ ( if ( 𝑘 = 𝑛 , ℝ , ( ◡ 𝐹 “ ( -∞ (,) ( 𝑘 + ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) ∖ ( ◡ 𝐹 “ ( -∞ (,) 𝑘 ) ) ) ) ∈ dom vol ) |
| 292 | 277 291 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ∈ dom vol ) |
| 293 | mblvol | ⊢ ( ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ∈ dom vol → ( vol ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ) | |
| 294 | 292 293 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) = ( vol* ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ) |
| 295 | 190 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝐺 ‘ 𝑛 ) Fn ℝ ) |
| 296 | 295 263 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ↔ ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) ) ) |
| 297 | 77 180 | ifcld | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ ℝ ) |
| 298 | 0re | ⊢ 0 ∈ ℝ | |
| 299 | ifcl | ⊢ ( ( if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ ℝ ) | |
| 300 | 297 298 299 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ ℝ ) |
| 301 | 39 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 302 | 33 300 301 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 303 | 32 302 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 304 | 303 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) ) |
| 305 | 304 | eqeq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ↔ if ( 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) , if ( ( 𝑛 𝐽 𝑥 ) ≤ 𝑛 , ( 𝑛 𝐽 𝑥 ) , 𝑛 ) , 0 ) = 𝑘 ) ) |
| 306 | 305 51 | sylbid | ⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
| 307 | 306 | expimpd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ( 𝑥 ∈ ℝ ∧ ( ( 𝐺 ‘ 𝑛 ) ‘ 𝑥 ) = 𝑘 ) → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
| 308 | 296 307 | sylbid | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( 𝑥 ∈ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) → 𝑥 ∈ ( - 𝑛 [,] 𝑛 ) ) ) |
| 309 | 308 | ssrdv | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ⊆ ( - 𝑛 [,] 𝑛 ) ) |
| 310 | iccssre | ⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) | |
| 311 | 267 266 310 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ) |
| 312 | mblvol | ⊢ ( ( - 𝑛 [,] 𝑛 ) ∈ dom vol → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) = ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) ) | |
| 313 | 269 312 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) = ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) ) |
| 314 | iccvolcl | ⊢ ( ( - 𝑛 ∈ ℝ ∧ 𝑛 ∈ ℝ ) → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ ) | |
| 315 | 267 266 314 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ ) |
| 316 | 313 315 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ ) |
| 317 | ovolsscl | ⊢ ( ( ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ⊆ ( - 𝑛 [,] 𝑛 ) ∧ ( - 𝑛 [,] 𝑛 ) ⊆ ℝ ∧ ( vol* ‘ ( - 𝑛 [,] 𝑛 ) ) ∈ ℝ ) → ( vol* ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ∈ ℝ ) | |
| 318 | 309 311 316 317 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol* ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ∈ ℝ ) |
| 319 | 294 318 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( ran ( 𝐺 ‘ 𝑛 ) ∖ { 0 } ) ) → ( vol ‘ ( ◡ ( 𝐺 ‘ 𝑛 ) “ { 𝑘 } ) ) ∈ ℝ ) |
| 320 | 21 29 292 319 | i1fd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ dom ∫1 ) |
| 321 | 320 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝐺 ‘ 𝑛 ) ∈ dom ∫1 ) |
| 322 | ffnfv | ⊢ ( 𝐺 : ℕ ⟶ dom ∫1 ↔ ( 𝐺 Fn ℕ ∧ ∀ 𝑛 ∈ ℕ ( 𝐺 ‘ 𝑛 ) ∈ dom ∫1 ) ) | |
| 323 | 8 321 322 | sylanbrc | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ dom ∫1 ) |