This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lemuldiv | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 · 𝐶 ) ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐵 / 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltdivmul2 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐵 / 𝐶 ) < 𝐴 ↔ 𝐵 < ( 𝐴 · 𝐶 ) ) ) | |
| 2 | 1 | 3com12 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐵 / 𝐶 ) < 𝐴 ↔ 𝐵 < ( 𝐴 · 𝐶 ) ) ) |
| 3 | 2 | notbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ¬ ( 𝐵 / 𝐶 ) < 𝐴 ↔ ¬ 𝐵 < ( 𝐴 · 𝐶 ) ) ) |
| 4 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → 𝐴 ∈ ℝ ) | |
| 5 | gt0ne0 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ≠ 0 ) | |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ≠ 0 ) |
| 7 | redivcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ( 𝐵 / 𝐶 ) ∈ ℝ ) | |
| 8 | 6 7 | syld3an3 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → ( 𝐵 / 𝐶 ) ∈ ℝ ) |
| 9 | 8 | 3expb | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐵 / 𝐶 ) ∈ ℝ ) |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐵 / 𝐶 ) ∈ ℝ ) |
| 11 | 4 10 | lenltd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ ( 𝐵 / 𝐶 ) ↔ ¬ ( 𝐵 / 𝐶 ) < 𝐴 ) ) |
| 12 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 · 𝐶 ) ∈ ℝ ) | |
| 13 | 12 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 · 𝐶 ) ∈ ℝ ) |
| 14 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 15 | 13 14 | lenltd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐶 ) ≤ 𝐵 ↔ ¬ 𝐵 < ( 𝐴 · 𝐶 ) ) ) |
| 16 | 15 | 3adant3r | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 · 𝐶 ) ≤ 𝐵 ↔ ¬ 𝐵 < ( 𝐴 · 𝐶 ) ) ) |
| 17 | 3 11 16 | 3bitr4rd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 · 𝐶 ) ≤ 𝐵 ↔ 𝐴 ≤ ( 𝐵 / 𝐶 ) ) ) |