This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfi1fseq . Verify that G describes an increasing sequence of positive functions. (Contributed by Mario Carneiro, 16-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfi1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfi1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| mbfi1fseq.3 | ⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) | ||
| mbfi1fseq.4 | ⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) | ||
| Assertion | mbfi1fseqlem5 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝐴 ) ∧ ( 𝐺 ‘ 𝐴 ) ∘r ≤ ( 𝐺 ‘ ( 𝐴 + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfi1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 3 | mbfi1fseq.3 | ⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) | |
| 4 | mbfi1fseq.4 | ⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) | |
| 5 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 6 | 5 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 7 | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 8 | 6 7 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 9 | 8 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 10 | 2nn | ⊢ 2 ∈ ℕ | |
| 11 | nnnn0 | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) | |
| 12 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝐴 ∈ ℕ0 ) → ( 2 ↑ 𝐴 ) ∈ ℕ ) | |
| 13 | 10 11 12 | sylancr | ⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
| 14 | 13 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
| 15 | 14 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℝ ) |
| 16 | 9 15 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ℝ ) |
| 17 | 14 | nnnn0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℕ0 ) |
| 18 | 17 | nn0ge0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 2 ↑ 𝐴 ) ) |
| 19 | mulge0 | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ ( ( 2 ↑ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ 𝐴 ) ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) | |
| 20 | 8 15 18 19 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) |
| 21 | flge0nn0 | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℕ0 ) | |
| 22 | 16 20 21 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℕ0 ) |
| 23 | 22 | nn0red | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℝ ) |
| 24 | 22 | nn0ge0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ) |
| 25 | 14 | nngt0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 < ( 2 ↑ 𝐴 ) ) |
| 26 | divge0 | ⊢ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℝ ∧ 0 ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ) ∧ ( ( 2 ↑ 𝐴 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐴 ) ) ) → 0 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) | |
| 27 | 23 24 15 25 26 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
| 28 | simpr | ⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) | |
| 29 | 28 | fveq2d | ⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 30 | simpl | ⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → 𝑚 = 𝐴 ) | |
| 31 | 30 | oveq2d | ⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝐴 ) ) |
| 32 | 29 31 | oveq12d | ⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) |
| 33 | 32 | fveq2d | ⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ) |
| 34 | 33 31 | oveq12d | ⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
| 35 | ovex | ⊢ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ∈ V | |
| 36 | 34 3 35 | ovmpoa | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
| 37 | 36 | adantll | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
| 38 | 27 37 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐴 𝐽 𝑥 ) ) |
| 39 | 11 | nn0ge0d | ⊢ ( 𝐴 ∈ ℕ → 0 ≤ 𝐴 ) |
| 40 | 39 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ 𝐴 ) |
| 41 | breq2 | ⊢ ( ( 𝐴 𝐽 𝑥 ) = if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) → ( 0 ≤ ( 𝐴 𝐽 𝑥 ) ↔ 0 ≤ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ) ) | |
| 42 | breq2 | ⊢ ( 𝐴 = if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) → ( 0 ≤ 𝐴 ↔ 0 ≤ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ) ) | |
| 43 | 41 42 | ifboth | ⊢ ( ( 0 ≤ ( 𝐴 𝐽 𝑥 ) ∧ 0 ≤ 𝐴 ) → 0 ≤ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ) |
| 44 | 38 40 43 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ) |
| 45 | 0le0 | ⊢ 0 ≤ 0 | |
| 46 | breq2 | ⊢ ( if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) = if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) → ( 0 ≤ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ↔ 0 ≤ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ) | |
| 47 | breq2 | ⊢ ( 0 = if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ) | |
| 48 | 46 47 | ifboth | ⊢ ( ( 0 ≤ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ∧ 0 ≤ 0 ) → 0 ≤ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) |
| 49 | 44 45 48 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) |
| 50 | 49 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ 0 ≤ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) |
| 51 | 0re | ⊢ 0 ∈ ℝ | |
| 52 | fnconstg | ⊢ ( 0 ∈ ℝ → ( ℂ × { 0 } ) Fn ℂ ) | |
| 53 | 51 52 | ax-mp | ⊢ ( ℂ × { 0 } ) Fn ℂ |
| 54 | df-0p | ⊢ 0𝑝 = ( ℂ × { 0 } ) | |
| 55 | 54 | fneq1i | ⊢ ( 0𝑝 Fn ℂ ↔ ( ℂ × { 0 } ) Fn ℂ ) |
| 56 | 53 55 | mpbir | ⊢ 0𝑝 Fn ℂ |
| 57 | 56 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → 0𝑝 Fn ℂ ) |
| 58 | 1 2 3 4 | mbfi1fseqlem4 | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ dom ∫1 ) |
| 59 | 58 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ 𝐴 ) ∈ dom ∫1 ) |
| 60 | i1ff | ⊢ ( ( 𝐺 ‘ 𝐴 ) ∈ dom ∫1 → ( 𝐺 ‘ 𝐴 ) : ℝ ⟶ ℝ ) | |
| 61 | ffn | ⊢ ( ( 𝐺 ‘ 𝐴 ) : ℝ ⟶ ℝ → ( 𝐺 ‘ 𝐴 ) Fn ℝ ) | |
| 62 | 59 60 61 | 3syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ 𝐴 ) Fn ℝ ) |
| 63 | cnex | ⊢ ℂ ∈ V | |
| 64 | 63 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ℂ ∈ V ) |
| 65 | reex | ⊢ ℝ ∈ V | |
| 66 | 65 | a1i | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ℝ ∈ V ) |
| 67 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 68 | sseqin2 | ⊢ ( ℝ ⊆ ℂ ↔ ( ℂ ∩ ℝ ) = ℝ ) | |
| 69 | 67 68 | mpbi | ⊢ ( ℂ ∩ ℝ ) = ℝ |
| 70 | 0pval | ⊢ ( 𝑥 ∈ ℂ → ( 0𝑝 ‘ 𝑥 ) = 0 ) | |
| 71 | 70 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℂ ) → ( 0𝑝 ‘ 𝑥 ) = 0 ) |
| 72 | 1 2 3 4 | mbfi1fseqlem2 | ⊢ ( 𝐴 ∈ ℕ → ( 𝐺 ‘ 𝐴 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ) |
| 73 | 72 | fveq1d | ⊢ ( 𝐴 ∈ ℕ → ( ( 𝐺 ‘ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ‘ 𝑥 ) ) |
| 74 | 73 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝐴 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ‘ 𝑥 ) ) |
| 75 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 76 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 77 | simpr | ⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 78 | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) | |
| 79 | 2 77 78 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 80 | 76 79 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 81 | nnnn0 | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) | |
| 82 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) | |
| 83 | 10 81 82 | sylancr | ⊢ ( 𝑚 ∈ ℕ → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 84 | 83 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 85 | 84 | nnred | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℝ ) |
| 86 | 80 85 | remulcld | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
| 87 | reflcl | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) | |
| 88 | 86 87 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) |
| 89 | 88 84 | nndivred | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
| 90 | 89 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
| 91 | 3 | fmpo | ⊢ ( ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ↔ 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ) |
| 92 | 90 91 | sylib | ⊢ ( 𝜑 → 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ) |
| 93 | fovcdm | ⊢ ( ( 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) ∈ ℝ ) | |
| 94 | 92 93 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) ∈ ℝ ) |
| 95 | 94 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) ∈ ℝ ) |
| 96 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 97 | 96 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 98 | 95 97 | ifcld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ∈ ℝ ) |
| 99 | ifcl | ⊢ ( ( if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ∈ ℝ ) | |
| 100 | 98 51 99 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ∈ ℝ ) |
| 101 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) | |
| 102 | 101 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) |
| 103 | 75 100 102 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) |
| 104 | 74 103 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ 𝐴 ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) |
| 105 | 57 62 64 66 69 71 104 | ofrfval | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝐴 ) ↔ ∀ 𝑥 ∈ ℝ 0 ≤ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ) |
| 106 | 50 105 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝐴 ) ) |
| 107 | 1 2 3 | mbfi1fseqlem1 | ⊢ ( 𝜑 → 𝐽 : ( ℕ × ℝ ) ⟶ ( 0 [,) +∞ ) ) |
| 108 | 107 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐽 : ( ℕ × ℝ ) ⟶ ( 0 [,) +∞ ) ) |
| 109 | peano2nn | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 + 1 ) ∈ ℕ ) | |
| 110 | 109 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 + 1 ) ∈ ℕ ) |
| 111 | 108 110 75 | fovcdmd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 112 | elrege0 | ⊢ ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ) ) | |
| 113 | 111 112 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ) ) |
| 114 | 113 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ∈ ℝ ) |
| 115 | min1 | ⊢ ( ( ( 𝐴 𝐽 𝑥 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( 𝐴 𝐽 𝑥 ) ) | |
| 116 | 95 97 115 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( 𝐴 𝐽 𝑥 ) ) |
| 117 | 2cn | ⊢ 2 ∈ ℂ | |
| 118 | 11 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℕ0 ) |
| 119 | expp1 | ⊢ ( ( 2 ∈ ℂ ∧ 𝐴 ∈ ℕ0 ) → ( 2 ↑ ( 𝐴 + 1 ) ) = ( ( 2 ↑ 𝐴 ) · 2 ) ) | |
| 120 | 117 118 119 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ ( 𝐴 + 1 ) ) = ( ( 2 ↑ 𝐴 ) · 2 ) ) |
| 121 | 120 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( ( 2 ↑ 𝐴 ) · 2 ) ) ) |
| 122 | 37 95 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ∈ ℝ ) |
| 123 | 122 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ∈ ℂ ) |
| 124 | 15 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℂ ) |
| 125 | 2cnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 2 ∈ ℂ ) | |
| 126 | 123 124 125 | mulassd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ 𝐴 ) ) · 2 ) = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( ( 2 ↑ 𝐴 ) · 2 ) ) ) |
| 127 | 23 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℂ ) |
| 128 | 14 | nnne0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ≠ 0 ) |
| 129 | 127 124 128 | divcan1d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ 𝐴 ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ) |
| 130 | 129 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ 𝐴 ) ) · 2 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ) |
| 131 | 121 126 130 | 3eqtr2d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ) |
| 132 | flle | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) | |
| 133 | 16 132 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) |
| 134 | 2re | ⊢ 2 ∈ ℝ | |
| 135 | 2pos | ⊢ 0 < 2 | |
| 136 | 134 135 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 137 | 136 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ∈ ℝ ∧ 0 < 2 ) ) |
| 138 | lemul1 | ⊢ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℝ ∧ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) · 2 ) ) ) | |
| 139 | 23 16 137 138 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) · 2 ) ) ) |
| 140 | 133 139 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) · 2 ) ) |
| 141 | 120 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( ( 2 ↑ 𝐴 ) · 2 ) ) ) |
| 142 | 9 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
| 143 | 142 124 125 | mulassd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) · 2 ) = ( ( 𝐹 ‘ 𝑥 ) · ( ( 2 ↑ 𝐴 ) · 2 ) ) ) |
| 144 | 141 143 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) · 2 ) ) |
| 145 | 140 144 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) |
| 146 | 110 | nnnn0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 + 1 ) ∈ ℕ0 ) |
| 147 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ ( 𝐴 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℕ ) | |
| 148 | 10 146 147 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℕ ) |
| 149 | 148 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℝ ) |
| 150 | 9 149 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ∈ ℝ ) |
| 151 | 16 | flcld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℤ ) |
| 152 | 2z | ⊢ 2 ∈ ℤ | |
| 153 | zmulcl | ⊢ ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ∈ ℤ ) | |
| 154 | 151 152 153 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ∈ ℤ ) |
| 155 | flge | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ∈ ℝ ∧ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ∈ ℤ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ) ) | |
| 156 | 150 154 155 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ) ) |
| 157 | 145 156 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) · 2 ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ) |
| 158 | 131 157 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ) |
| 159 | reflcl | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ∈ ℝ ) | |
| 160 | 150 159 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ∈ ℝ ) |
| 161 | 148 | nngt0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 < ( 2 ↑ ( 𝐴 + 1 ) ) ) |
| 162 | lemuldiv | ⊢ ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ∈ ℝ ∧ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ∈ ℝ ∧ ( ( 2 ↑ ( 𝐴 + 1 ) ) ∈ ℝ ∧ 0 < ( 2 ↑ ( 𝐴 + 1 ) ) ) ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) / ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ) | |
| 163 | 122 160 149 161 162 | syl112anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ≤ ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ↔ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) / ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ) |
| 164 | 158 163 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ≤ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) / ( 2 ↑ ( 𝐴 + 1 ) ) ) ) |
| 165 | simpr | ⊢ ( ( 𝑚 = ( 𝐴 + 1 ) ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) | |
| 166 | 165 | fveq2d | ⊢ ( ( 𝑚 = ( 𝐴 + 1 ) ∧ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 167 | simpl | ⊢ ( ( 𝑚 = ( 𝐴 + 1 ) ∧ 𝑦 = 𝑥 ) → 𝑚 = ( 𝐴 + 1 ) ) | |
| 168 | 167 | oveq2d | ⊢ ( ( 𝑚 = ( 𝐴 + 1 ) ∧ 𝑦 = 𝑥 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ ( 𝐴 + 1 ) ) ) |
| 169 | 166 168 | oveq12d | ⊢ ( ( 𝑚 = ( 𝐴 + 1 ) ∧ 𝑦 = 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) |
| 170 | 169 | fveq2d | ⊢ ( ( 𝑚 = ( 𝐴 + 1 ) ∧ 𝑦 = 𝑥 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) ) |
| 171 | 170 168 | oveq12d | ⊢ ( ( 𝑚 = ( 𝐴 + 1 ) ∧ 𝑦 = 𝑥 ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) / ( 2 ↑ ( 𝐴 + 1 ) ) ) ) |
| 172 | ovex | ⊢ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) / ( 2 ↑ ( 𝐴 + 1 ) ) ) ∈ V | |
| 173 | 171 3 172 | ovmpoa | ⊢ ( ( ( 𝐴 + 1 ) ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 + 1 ) 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) / ( 2 ↑ ( 𝐴 + 1 ) ) ) ) |
| 174 | 110 75 173 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 + 1 ) 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ ( 𝐴 + 1 ) ) ) ) / ( 2 ↑ ( 𝐴 + 1 ) ) ) ) |
| 175 | 164 37 174 | 3brtr4d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ) |
| 176 | 98 95 114 116 175 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ) |
| 177 | 110 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 + 1 ) ∈ ℝ ) |
| 178 | min2 | ⊢ ( ( ( 𝐴 𝐽 𝑥 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ 𝐴 ) | |
| 179 | 95 97 178 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ 𝐴 ) |
| 180 | 97 | lep1d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ≤ ( 𝐴 + 1 ) ) |
| 181 | 98 97 177 179 180 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( 𝐴 + 1 ) ) |
| 182 | breq2 | ⊢ ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) = if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) → ( if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ↔ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) ) | |
| 183 | breq2 | ⊢ ( ( 𝐴 + 1 ) = if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) → ( if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( 𝐴 + 1 ) ↔ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) ) | |
| 184 | 182 183 | ifboth | ⊢ ( ( if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ∧ if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ ( 𝐴 + 1 ) ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) |
| 185 | 176 181 184 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) |
| 186 | 185 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) |
| 187 | iftrue | ⊢ ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) = if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ) | |
| 188 | 187 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) = if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ) |
| 189 | 177 | renegcld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → - ( 𝐴 + 1 ) ∈ ℝ ) |
| 190 | 97 177 | lenegd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 ≤ ( 𝐴 + 1 ) ↔ - ( 𝐴 + 1 ) ≤ - 𝐴 ) ) |
| 191 | 180 190 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → - ( 𝐴 + 1 ) ≤ - 𝐴 ) |
| 192 | iccss | ⊢ ( ( ( - ( 𝐴 + 1 ) ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ) ∧ ( - ( 𝐴 + 1 ) ≤ - 𝐴 ∧ 𝐴 ≤ ( 𝐴 + 1 ) ) ) → ( - 𝐴 [,] 𝐴 ) ⊆ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) ) | |
| 193 | 189 177 191 180 192 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( - 𝐴 [,] 𝐴 ) ⊆ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) ) |
| 194 | 193 | sselda | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) ) |
| 195 | 194 | iftrued | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) = if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) |
| 196 | 186 188 195 | 3brtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
| 197 | iffalse | ⊢ ( ¬ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) = 0 ) | |
| 198 | 197 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) = 0 ) |
| 199 | 113 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ) |
| 200 | 146 | nn0ge0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 𝐴 + 1 ) ) |
| 201 | breq2 | ⊢ ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) = if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) → ( 0 ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ↔ 0 ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) ) | |
| 202 | breq2 | ⊢ ( ( 𝐴 + 1 ) = if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) → ( 0 ≤ ( 𝐴 + 1 ) ↔ 0 ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) ) | |
| 203 | 201 202 | ifboth | ⊢ ( ( 0 ≤ ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ∧ 0 ≤ ( 𝐴 + 1 ) ) → 0 ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) |
| 204 | 199 200 203 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ) |
| 205 | breq2 | ⊢ ( if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) = if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) → ( 0 ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ↔ 0 ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ) | |
| 206 | breq2 | ⊢ ( 0 = if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ) | |
| 207 | 205 206 | ifboth | ⊢ ( ( 0 ≤ if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ∧ 0 ≤ 0 ) → 0 ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
| 208 | 204 45 207 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
| 209 | 208 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → 0 ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
| 210 | 198 209 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
| 211 | 196 210 | pm2.61dan | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
| 212 | 211 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
| 213 | ffvelcdm | ⊢ ( ( 𝐺 : ℕ ⟶ dom ∫1 ∧ ( 𝐴 + 1 ) ∈ ℕ ) → ( 𝐺 ‘ ( 𝐴 + 1 ) ) ∈ dom ∫1 ) | |
| 214 | 58 109 213 | syl2an | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ ( 𝐴 + 1 ) ) ∈ dom ∫1 ) |
| 215 | i1ff | ⊢ ( ( 𝐺 ‘ ( 𝐴 + 1 ) ) ∈ dom ∫1 → ( 𝐺 ‘ ( 𝐴 + 1 ) ) : ℝ ⟶ ℝ ) | |
| 216 | ffn | ⊢ ( ( 𝐺 ‘ ( 𝐴 + 1 ) ) : ℝ ⟶ ℝ → ( 𝐺 ‘ ( 𝐴 + 1 ) ) Fn ℝ ) | |
| 217 | 214 215 216 | 3syl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ ( 𝐴 + 1 ) ) Fn ℝ ) |
| 218 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 219 | 1 2 3 4 | mbfi1fseqlem2 | ⊢ ( ( 𝐴 + 1 ) ∈ ℕ → ( 𝐺 ‘ ( 𝐴 + 1 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ) |
| 220 | 219 | fveq1d | ⊢ ( ( 𝐴 + 1 ) ∈ ℕ → ( ( 𝐺 ‘ ( 𝐴 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ‘ 𝑥 ) ) |
| 221 | 110 220 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ ( 𝐴 + 1 ) ) ‘ 𝑥 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ‘ 𝑥 ) ) |
| 222 | 114 177 | ifcld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ∈ ℝ ) |
| 223 | ifcl | ⊢ ( ( if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) ∈ ℝ ∧ 0 ∈ ℝ ) → if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ∈ ℝ ) | |
| 224 | 222 51 223 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ∈ ℝ ) |
| 225 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) | |
| 226 | 225 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
| 227 | 75 224 226 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
| 228 | 221 227 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐺 ‘ ( 𝐴 + 1 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) |
| 229 | 62 217 66 66 218 104 228 | ofrfval | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( ( 𝐺 ‘ 𝐴 ) ∘r ≤ ( 𝐺 ‘ ( 𝐴 + 1 ) ) ↔ ∀ 𝑥 ∈ ℝ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ≤ if ( 𝑥 ∈ ( - ( 𝐴 + 1 ) [,] ( 𝐴 + 1 ) ) , if ( ( ( 𝐴 + 1 ) 𝐽 𝑥 ) ≤ ( 𝐴 + 1 ) , ( ( 𝐴 + 1 ) 𝐽 𝑥 ) , ( 𝐴 + 1 ) ) , 0 ) ) ) |
| 230 | 212 229 | mpbird | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ 𝐴 ) ∘r ≤ ( 𝐺 ‘ ( 𝐴 + 1 ) ) ) |
| 231 | 106 230 | jca | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 0𝑝 ∘r ≤ ( 𝐺 ‘ 𝐴 ) ∧ ( 𝐺 ‘ 𝐴 ) ∘r ≤ ( 𝐺 ‘ ( 𝐴 + 1 ) ) ) ) |