This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A condition equivalent to floor. (Contributed by NM, 11-Mar-2005) (Revised by Mario Carneiro, 2-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flbi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) = 𝐵 ↔ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 𝐵 + 1 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flval | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) = ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) ) | |
| 2 | 1 | eqeq1d | ⊢ ( 𝐴 ∈ ℝ → ( ( ⌊ ‘ 𝐴 ) = 𝐵 ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = 𝐵 ) ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) = 𝐵 ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = 𝐵 ) ) |
| 4 | rebtwnz | ⊢ ( 𝐴 ∈ ℝ → ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) | |
| 5 | breq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 ≤ 𝐴 ↔ 𝐵 ≤ 𝐴 ) ) | |
| 6 | oveq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 + 1 ) = ( 𝐵 + 1 ) ) | |
| 7 | 6 | breq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 < ( 𝑥 + 1 ) ↔ 𝐴 < ( 𝐵 + 1 ) ) ) |
| 8 | 5 7 | anbi12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ↔ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 𝐵 + 1 ) ) ) ) |
| 9 | 8 | riota2 | ⊢ ( ( 𝐵 ∈ ℤ ∧ ∃! 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 𝐵 + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = 𝐵 ) ) |
| 10 | 4 9 | sylan2 | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 𝐵 + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = 𝐵 ) ) |
| 11 | 10 | ancoms | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 𝐵 + 1 ) ) ↔ ( ℩ 𝑥 ∈ ℤ ( 𝑥 ≤ 𝐴 ∧ 𝐴 < ( 𝑥 + 1 ) ) ) = 𝐵 ) ) |
| 12 | 3 11 | bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) = 𝐵 ↔ ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( 𝐵 + 1 ) ) ) ) |