This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997) Remove dependency on ax-mulcom and ax-mulass . (Revised by Steven Nguyen, 24-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnmulcl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 · 𝐵 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | ⊢ ( 𝑥 = 1 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 1 ) ) | |
| 2 | 1 | eleq1d | ⊢ ( 𝑥 = 1 → ( ( 𝐴 · 𝑥 ) ∈ ℕ ↔ ( 𝐴 · 1 ) ∈ ℕ ) ) |
| 3 | 2 | imbi2d | ⊢ ( 𝑥 = 1 → ( ( 𝐴 ∈ ℕ → ( 𝐴 · 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 · 1 ) ∈ ℕ ) ) ) |
| 4 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝑦 ) ) | |
| 5 | 4 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 · 𝑥 ) ∈ ℕ ↔ ( 𝐴 · 𝑦 ) ∈ ℕ ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ∈ ℕ → ( 𝐴 · 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 · 𝑦 ) ∈ ℕ ) ) ) |
| 7 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 · 𝑥 ) = ( 𝐴 · ( 𝑦 + 1 ) ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 · 𝑥 ) ∈ ℕ ↔ ( 𝐴 · ( 𝑦 + 1 ) ) ∈ ℕ ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝐴 ∈ ℕ → ( 𝐴 · 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 · ( 𝑦 + 1 ) ) ∈ ℕ ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐴 · 𝑥 ) = ( 𝐴 · 𝐵 ) ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 · 𝑥 ) ∈ ℕ ↔ ( 𝐴 · 𝐵 ) ∈ ℕ ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐴 ∈ ℕ → ( 𝐴 · 𝑥 ) ∈ ℕ ) ↔ ( 𝐴 ∈ ℕ → ( 𝐴 · 𝐵 ) ∈ ℕ ) ) ) |
| 13 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 14 | ax-1rid | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) | |
| 15 | 14 | eleq1d | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 · 1 ) ∈ ℕ ↔ 𝐴 ∈ ℕ ) ) |
| 16 | 15 | biimprd | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ∈ ℕ → ( 𝐴 · 1 ) ∈ ℕ ) ) |
| 17 | 13 16 | mpcom | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 · 1 ) ∈ ℕ ) |
| 18 | nnaddcl | ⊢ ( ( ( 𝐴 · 𝑦 ) ∈ ℕ ∧ 𝐴 ∈ ℕ ) → ( ( 𝐴 · 𝑦 ) + 𝐴 ) ∈ ℕ ) | |
| 19 | 18 | ancoms | ⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝐴 · 𝑦 ) ∈ ℕ ) → ( ( 𝐴 · 𝑦 ) + 𝐴 ) ∈ ℕ ) |
| 20 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
| 21 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 22 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 23 | adddi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 · ( 𝑦 + 1 ) ) = ( ( 𝐴 · 𝑦 ) + ( 𝐴 · 1 ) ) ) | |
| 24 | 22 23 | mp3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( 𝐴 · ( 𝑦 + 1 ) ) = ( ( 𝐴 · 𝑦 ) + ( 𝐴 · 1 ) ) ) |
| 25 | 20 21 24 | syl2an | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 · ( 𝑦 + 1 ) ) = ( ( 𝐴 · 𝑦 ) + ( 𝐴 · 1 ) ) ) |
| 26 | 13 14 | syl | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 · 1 ) = 𝐴 ) |
| 27 | 26 | adantr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 28 | 27 | oveq2d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝐴 · 𝑦 ) + ( 𝐴 · 1 ) ) = ( ( 𝐴 · 𝑦 ) + 𝐴 ) ) |
| 29 | 25 28 | eqtrd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 · ( 𝑦 + 1 ) ) = ( ( 𝐴 · 𝑦 ) + 𝐴 ) ) |
| 30 | 29 | eleq1d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝐴 · ( 𝑦 + 1 ) ) ∈ ℕ ↔ ( ( 𝐴 · 𝑦 ) + 𝐴 ) ∈ ℕ ) ) |
| 31 | 19 30 | imbitrrid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 𝐴 ∈ ℕ ∧ ( 𝐴 · 𝑦 ) ∈ ℕ ) → ( 𝐴 · ( 𝑦 + 1 ) ) ∈ ℕ ) ) |
| 32 | 31 | exp4b | ⊢ ( 𝐴 ∈ ℕ → ( 𝑦 ∈ ℕ → ( 𝐴 ∈ ℕ → ( ( 𝐴 · 𝑦 ) ∈ ℕ → ( 𝐴 · ( 𝑦 + 1 ) ) ∈ ℕ ) ) ) ) |
| 33 | 32 | pm2.43b | ⊢ ( 𝑦 ∈ ℕ → ( 𝐴 ∈ ℕ → ( ( 𝐴 · 𝑦 ) ∈ ℕ → ( 𝐴 · ( 𝑦 + 1 ) ) ∈ ℕ ) ) ) |
| 34 | 33 | a2d | ⊢ ( 𝑦 ∈ ℕ → ( ( 𝐴 ∈ ℕ → ( 𝐴 · 𝑦 ) ∈ ℕ ) → ( 𝐴 ∈ ℕ → ( 𝐴 · ( 𝑦 + 1 ) ) ∈ ℕ ) ) ) |
| 35 | 3 6 9 12 17 34 | nnind | ⊢ ( 𝐵 ∈ ℕ → ( 𝐴 ∈ ℕ → ( 𝐴 · 𝐵 ) ∈ ℕ ) ) |
| 36 | 35 | impcom | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 · 𝐵 ) ∈ ℕ ) |