This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfi1fseq . This lemma is not as interesting as it is long - it is simply checking that G is in fact a sequence of simple functions, by verifying that its range is in ( 0 ... n 2 ^ n ) / ( 2 ^ n ) (which is to say, the numbers from 0 to n in increments of 1 / ( 2 ^ n ) ), and also that the preimage of each point k is measurable, because it is equal to ( -u n , n ) i^i (`' F " ( k [,) k + 1 / ( 2 ^ n ) ) ) for k < n and ( -u n , n ) i^i ( ``' F " ( k [,) +oo ) ) for k = n ` . (Contributed by Mario Carneiro, 16-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfi1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| mbfi1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
||
| mbfi1fseq.3 | |- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
||
| mbfi1fseq.4 | |- G = ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) |
||
| Assertion | mbfi1fseqlem4 | |- ( ph -> G : NN --> dom S.1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1fseq.1 | |- ( ph -> F e. MblFn ) |
|
| 2 | mbfi1fseq.2 | |- ( ph -> F : RR --> ( 0 [,) +oo ) ) |
|
| 3 | mbfi1fseq.3 | |- J = ( m e. NN , y e. RR |-> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) ) |
|
| 4 | mbfi1fseq.4 | |- G = ( m e. NN |-> ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) ) |
|
| 5 | reex | |- RR e. _V |
|
| 6 | 5 | mptex | |- ( x e. RR |-> if ( x e. ( -u m [,] m ) , if ( ( m J x ) <_ m , ( m J x ) , m ) , 0 ) ) e. _V |
| 7 | 6 4 | fnmpti | |- G Fn NN |
| 8 | 7 | a1i | |- ( ph -> G Fn NN ) |
| 9 | 1 2 3 4 | mbfi1fseqlem3 | |- ( ( ph /\ n e. NN ) -> ( G ` n ) : RR --> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
| 10 | elfznn0 | |- ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) -> m e. NN0 ) |
|
| 11 | 10 | nn0red | |- ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) -> m e. RR ) |
| 12 | 2nn | |- 2 e. NN |
|
| 13 | nnnn0 | |- ( n e. NN -> n e. NN0 ) |
|
| 14 | nnexpcl | |- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
|
| 15 | 12 13 14 | sylancr | |- ( n e. NN -> ( 2 ^ n ) e. NN ) |
| 16 | 15 | adantl | |- ( ( ph /\ n e. NN ) -> ( 2 ^ n ) e. NN ) |
| 17 | nndivre | |- ( ( m e. RR /\ ( 2 ^ n ) e. NN ) -> ( m / ( 2 ^ n ) ) e. RR ) |
|
| 18 | 11 16 17 | syl2anr | |- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( m / ( 2 ^ n ) ) e. RR ) |
| 19 | 18 | fmpttd | |- ( ( ph /\ n e. NN ) -> ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) : ( 0 ... ( n x. ( 2 ^ n ) ) ) --> RR ) |
| 20 | 19 | frnd | |- ( ( ph /\ n e. NN ) -> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) C_ RR ) |
| 21 | 9 20 | fssd | |- ( ( ph /\ n e. NN ) -> ( G ` n ) : RR --> RR ) |
| 22 | fzfid | |- ( ( ph /\ n e. NN ) -> ( 0 ... ( n x. ( 2 ^ n ) ) ) e. Fin ) |
|
| 23 | 19 | ffnd | |- ( ( ph /\ n e. NN ) -> ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) Fn ( 0 ... ( n x. ( 2 ^ n ) ) ) ) |
| 24 | dffn4 | |- ( ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) Fn ( 0 ... ( n x. ( 2 ^ n ) ) ) <-> ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) : ( 0 ... ( n x. ( 2 ^ n ) ) ) -onto-> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
|
| 25 | 23 24 | sylib | |- ( ( ph /\ n e. NN ) -> ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) : ( 0 ... ( n x. ( 2 ^ n ) ) ) -onto-> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
| 26 | fofi | |- ( ( ( 0 ... ( n x. ( 2 ^ n ) ) ) e. Fin /\ ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) : ( 0 ... ( n x. ( 2 ^ n ) ) ) -onto-> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) -> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) e. Fin ) |
|
| 27 | 22 25 26 | syl2anc | |- ( ( ph /\ n e. NN ) -> ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) e. Fin ) |
| 28 | 9 | frnd | |- ( ( ph /\ n e. NN ) -> ran ( G ` n ) C_ ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
| 29 | 27 28 | ssfid | |- ( ( ph /\ n e. NN ) -> ran ( G ` n ) e. Fin ) |
| 30 | 1 2 3 4 | mbfi1fseqlem2 | |- ( n e. NN -> ( G ` n ) = ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ) |
| 31 | 30 | fveq1d | |- ( n e. NN -> ( ( G ` n ) ` x ) = ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) ) |
| 32 | 31 | ad2antlr | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) ) |
| 33 | simpr | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> x e. RR ) |
|
| 34 | ovex | |- ( n J x ) e. _V |
|
| 35 | vex | |- n e. _V |
|
| 36 | 34 35 | ifex | |- if ( ( n J x ) <_ n , ( n J x ) , n ) e. _V |
| 37 | c0ex | |- 0 e. _V |
|
| 38 | 36 37 | ifex | |- if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. _V |
| 39 | eqid | |- ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) = ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
|
| 40 | 39 | fvmpt2 | |- ( ( x e. RR /\ if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. _V ) -> ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 41 | 33 38 40 | sylancl | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 42 | 32 41 | eqtrd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 43 | 42 | adantlr | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 44 | 43 | eqeq1d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( G ` n ) ` x ) = k <-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k ) ) |
| 45 | eldifsni | |- ( k e. ( ran ( G ` n ) \ { 0 } ) -> k =/= 0 ) |
|
| 46 | 45 | ad2antlr | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> k =/= 0 ) |
| 47 | neeq1 | |- ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) =/= 0 <-> k =/= 0 ) ) |
|
| 48 | 46 47 | syl5ibrcom | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) =/= 0 ) ) |
| 49 | iffalse | |- ( -. x e. ( -u n [,] n ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = 0 ) |
|
| 50 | 49 | necon1ai | |- ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) =/= 0 -> x e. ( -u n [,] n ) ) |
| 51 | 48 50 | syl6 | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k -> x e. ( -u n [,] n ) ) ) |
| 52 | 51 | pm4.71rd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k <-> ( x e. ( -u n [,] n ) /\ if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k ) ) ) |
| 53 | iftrue | |- ( x e. ( -u n [,] n ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = if ( ( n J x ) <_ n , ( n J x ) , n ) ) |
|
| 54 | 53 | eqeq1d | |- ( x e. ( -u n [,] n ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k <-> if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) ) |
| 55 | simpllr | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> n e. NN ) |
|
| 56 | 55 | nnred | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> n e. RR ) |
| 57 | 56 | adantr | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> n e. RR ) |
| 58 | rge0ssre | |- ( 0 [,) +oo ) C_ RR |
|
| 59 | simpr | |- ( ( m e. NN /\ y e. RR ) -> y e. RR ) |
|
| 60 | ffvelcdm | |- ( ( F : RR --> ( 0 [,) +oo ) /\ y e. RR ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
|
| 61 | 2 59 60 | syl2an | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( F ` y ) e. ( 0 [,) +oo ) ) |
| 62 | 58 61 | sselid | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( F ` y ) e. RR ) |
| 63 | nnnn0 | |- ( m e. NN -> m e. NN0 ) |
|
| 64 | nnexpcl | |- ( ( 2 e. NN /\ m e. NN0 ) -> ( 2 ^ m ) e. NN ) |
|
| 65 | 12 63 64 | sylancr | |- ( m e. NN -> ( 2 ^ m ) e. NN ) |
| 66 | 65 | ad2antrl | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. NN ) |
| 67 | 66 | nnred | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( 2 ^ m ) e. RR ) |
| 68 | 62 67 | remulcld | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( F ` y ) x. ( 2 ^ m ) ) e. RR ) |
| 69 | reflcl | |- ( ( ( F ` y ) x. ( 2 ^ m ) ) e. RR -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR ) |
|
| 70 | 68 69 | syl | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) e. RR ) |
| 71 | 70 66 | nndivred | |- ( ( ph /\ ( m e. NN /\ y e. RR ) ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR ) |
| 72 | 71 | ralrimivva | |- ( ph -> A. m e. NN A. y e. RR ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR ) |
| 73 | 3 | fmpo | |- ( A. m e. NN A. y e. RR ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) e. RR <-> J : ( NN X. RR ) --> RR ) |
| 74 | 72 73 | sylib | |- ( ph -> J : ( NN X. RR ) --> RR ) |
| 75 | fovcdm | |- ( ( J : ( NN X. RR ) --> RR /\ n e. NN /\ x e. RR ) -> ( n J x ) e. RR ) |
|
| 76 | 74 75 | syl3an1 | |- ( ( ph /\ n e. NN /\ x e. RR ) -> ( n J x ) e. RR ) |
| 77 | 76 | 3expa | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( n J x ) e. RR ) |
| 78 | 77 | adantlr | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n J x ) e. RR ) |
| 79 | 78 | adantr | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( n J x ) e. RR ) |
| 80 | lemin | |- ( ( n e. RR /\ ( n J x ) e. RR /\ n e. RR ) -> ( n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) <-> ( n <_ ( n J x ) /\ n <_ n ) ) ) |
|
| 81 | 57 79 57 80 | syl3anc | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) <-> ( n <_ ( n J x ) /\ n <_ n ) ) ) |
| 82 | 79 57 | ifcld | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) e. RR ) |
| 83 | 82 57 | letri3d | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = n <-> ( if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n /\ n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) ) ) ) |
| 84 | simpr | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> k = n ) |
|
| 85 | 84 | eqeq2d | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> if ( ( n J x ) <_ n , ( n J x ) , n ) = n ) ) |
| 86 | min2 | |- ( ( ( n J x ) e. RR /\ n e. RR ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n ) |
|
| 87 | 79 57 86 | syl2anc | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n ) |
| 88 | 87 | biantrurd | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) <-> ( if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n /\ n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) ) ) ) |
| 89 | 83 85 88 | 3bitr4d | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> n <_ if ( ( n J x ) <_ n , ( n J x ) , n ) ) ) |
| 90 | 57 | leidd | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> n <_ n ) |
| 91 | 90 | biantrud | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( n <_ ( n J x ) <-> ( n <_ ( n J x ) /\ n <_ n ) ) ) |
| 92 | 81 89 91 | 3bitr4d | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> n <_ ( n J x ) ) ) |
| 93 | breq1 | |- ( k = n -> ( k <_ ( F ` x ) <-> n <_ ( F ` x ) ) ) |
|
| 94 | 2 | adantr | |- ( ( ph /\ n e. NN ) -> F : RR --> ( 0 [,) +oo ) ) |
| 95 | 94 | ffvelcdmda | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` x ) e. ( 0 [,) +oo ) ) |
| 96 | elrege0 | |- ( ( F ` x ) e. ( 0 [,) +oo ) <-> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
|
| 97 | 95 96 | sylib | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` x ) e. RR /\ 0 <_ ( F ` x ) ) ) |
| 98 | 97 | simpld | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 99 | 98 | adantlr | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( F ` x ) e. RR ) |
| 100 | 55 15 | syl | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 2 ^ n ) e. NN ) |
| 101 | 100 | nnred | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 2 ^ n ) e. RR ) |
| 102 | 99 101 | remulcld | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) x. ( 2 ^ n ) ) e. RR ) |
| 103 | reflcl | |- ( ( ( F ` x ) x. ( 2 ^ n ) ) e. RR -> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) e. RR ) |
|
| 104 | 102 103 | syl | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) e. RR ) |
| 105 | 100 | nngt0d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> 0 < ( 2 ^ n ) ) |
| 106 | lemuldiv | |- ( ( n e. RR /\ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) <-> n <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) ) |
|
| 107 | 56 104 101 105 106 | syl112anc | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) <-> n <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) ) |
| 108 | lemul1 | |- ( ( n e. RR /\ ( F ` x ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( n <_ ( F ` x ) <-> ( n x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
|
| 109 | 56 99 101 105 108 | syl112anc | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n <_ ( F ` x ) <-> ( n x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
| 110 | nnmulcl | |- ( ( n e. NN /\ ( 2 ^ n ) e. NN ) -> ( n x. ( 2 ^ n ) ) e. NN ) |
|
| 111 | 55 15 110 | syl2anc2 | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n x. ( 2 ^ n ) ) e. NN ) |
| 112 | 111 | nnzd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n x. ( 2 ^ n ) ) e. ZZ ) |
| 113 | flge | |- ( ( ( ( F ` x ) x. ( 2 ^ n ) ) e. RR /\ ( n x. ( 2 ^ n ) ) e. ZZ ) -> ( ( n x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) <-> ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) ) ) |
|
| 114 | 102 112 113 | syl2anc | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( n x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) <-> ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) ) ) |
| 115 | 109 114 | bitrd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n <_ ( F ` x ) <-> ( n x. ( 2 ^ n ) ) <_ ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) ) ) |
| 116 | simpr | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> x e. RR ) |
|
| 117 | simpr | |- ( ( m = n /\ y = x ) -> y = x ) |
|
| 118 | 117 | fveq2d | |- ( ( m = n /\ y = x ) -> ( F ` y ) = ( F ` x ) ) |
| 119 | simpl | |- ( ( m = n /\ y = x ) -> m = n ) |
|
| 120 | 119 | oveq2d | |- ( ( m = n /\ y = x ) -> ( 2 ^ m ) = ( 2 ^ n ) ) |
| 121 | 118 120 | oveq12d | |- ( ( m = n /\ y = x ) -> ( ( F ` y ) x. ( 2 ^ m ) ) = ( ( F ` x ) x. ( 2 ^ n ) ) ) |
| 122 | 121 | fveq2d | |- ( ( m = n /\ y = x ) -> ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) = ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
| 123 | 122 120 | oveq12d | |- ( ( m = n /\ y = x ) -> ( ( |_ ` ( ( F ` y ) x. ( 2 ^ m ) ) ) / ( 2 ^ m ) ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) |
| 124 | ovex | |- ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) e. _V |
|
| 125 | 123 3 124 | ovmpoa | |- ( ( n e. NN /\ x e. RR ) -> ( n J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) |
| 126 | 55 116 125 | syl2anc | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n J x ) = ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) |
| 127 | 126 | breq2d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n <_ ( n J x ) <-> n <_ ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) ) ) |
| 128 | 107 115 127 | 3bitr4d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( n <_ ( F ` x ) <-> n <_ ( n J x ) ) ) |
| 129 | 93 128 | sylan9bbr | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( k <_ ( F ` x ) <-> n <_ ( n J x ) ) ) |
| 130 | 116 | adantr | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> x e. RR ) |
| 131 | iftrue | |- ( k = n -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) = RR ) |
|
| 132 | 131 | adantl | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) = RR ) |
| 133 | 130 132 | eleqtrrd | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) ) |
| 134 | 133 | biantrurd | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( k <_ ( F ` x ) <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
| 135 | 92 129 134 | 3bitr2d | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k = n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
| 136 | 28 | ssdifssd | |- ( ( ph /\ n e. NN ) -> ( ran ( G ` n ) \ { 0 } ) C_ ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
| 137 | 136 | sselda | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> k e. ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) |
| 138 | eqid | |- ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) = ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) |
|
| 139 | 138 | rnmpt | |- ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) = { k | E. m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) k = ( m / ( 2 ^ n ) ) } |
| 140 | 139 | eqabri | |- ( k e. ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) <-> E. m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) k = ( m / ( 2 ^ n ) ) ) |
| 141 | elfzelz | |- ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) -> m e. ZZ ) |
|
| 142 | 141 | adantl | |- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> m e. ZZ ) |
| 143 | 142 | zcnd | |- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> m e. CC ) |
| 144 | 15 | ad2antlr | |- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( 2 ^ n ) e. NN ) |
| 145 | 144 | nncnd | |- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( 2 ^ n ) e. CC ) |
| 146 | 144 | nnne0d | |- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( 2 ^ n ) =/= 0 ) |
| 147 | 143 145 146 | divcan1d | |- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( ( m / ( 2 ^ n ) ) x. ( 2 ^ n ) ) = m ) |
| 148 | 147 142 | eqeltrd | |- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( ( m / ( 2 ^ n ) ) x. ( 2 ^ n ) ) e. ZZ ) |
| 149 | oveq1 | |- ( k = ( m / ( 2 ^ n ) ) -> ( k x. ( 2 ^ n ) ) = ( ( m / ( 2 ^ n ) ) x. ( 2 ^ n ) ) ) |
|
| 150 | 149 | eleq1d | |- ( k = ( m / ( 2 ^ n ) ) -> ( ( k x. ( 2 ^ n ) ) e. ZZ <-> ( ( m / ( 2 ^ n ) ) x. ( 2 ^ n ) ) e. ZZ ) ) |
| 151 | 148 150 | syl5ibrcom | |- ( ( ( ph /\ n e. NN ) /\ m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) ) -> ( k = ( m / ( 2 ^ n ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) ) |
| 152 | 151 | rexlimdva | |- ( ( ph /\ n e. NN ) -> ( E. m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) k = ( m / ( 2 ^ n ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) ) |
| 153 | 140 152 | biimtrid | |- ( ( ph /\ n e. NN ) -> ( k e. ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) ) |
| 154 | 153 | imp | |- ( ( ( ph /\ n e. NN ) /\ k e. ran ( m e. ( 0 ... ( n x. ( 2 ^ n ) ) ) |-> ( m / ( 2 ^ n ) ) ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) |
| 155 | 137 154 | syldan | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) |
| 156 | 155 | adantr | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k x. ( 2 ^ n ) ) e. ZZ ) |
| 157 | flbi | |- ( ( ( ( F ` x ) x. ( 2 ^ n ) ) e. RR /\ ( k x. ( 2 ^ n ) ) e. ZZ ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) <-> ( ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) /\ ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) ) |
|
| 158 | 102 156 157 | syl2anc | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) <-> ( ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) /\ ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) ) |
| 159 | 158 | adantr | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) <-> ( ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) /\ ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) ) |
| 160 | neeq1 | |- ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) =/= n <-> k =/= n ) ) |
|
| 161 | 160 | biimparc | |- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) =/= n ) |
| 162 | iffalse | |- ( -. ( n J x ) <_ n -> if ( ( n J x ) <_ n , ( n J x ) , n ) = n ) |
|
| 163 | 162 | necon1ai | |- ( if ( ( n J x ) <_ n , ( n J x ) , n ) =/= n -> ( n J x ) <_ n ) |
| 164 | 161 163 | syl | |- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> ( n J x ) <_ n ) |
| 165 | 164 | iftrued | |- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) = ( n J x ) ) |
| 166 | simpr | |- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) |
|
| 167 | 165 166 | eqtr3d | |- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> ( n J x ) = k ) |
| 168 | 167 164 | eqbrtrrd | |- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> k <_ n ) |
| 169 | 168 167 | jca | |- ( ( k =/= n /\ if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) -> ( k <_ n /\ ( n J x ) = k ) ) |
| 170 | 169 | ex | |- ( k =/= n -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k -> ( k <_ n /\ ( n J x ) = k ) ) ) |
| 171 | breq1 | |- ( ( n J x ) = k -> ( ( n J x ) <_ n <-> k <_ n ) ) |
|
| 172 | 171 | biimparc | |- ( ( k <_ n /\ ( n J x ) = k ) -> ( n J x ) <_ n ) |
| 173 | 172 | iftrued | |- ( ( k <_ n /\ ( n J x ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) = ( n J x ) ) |
| 174 | simpr | |- ( ( k <_ n /\ ( n J x ) = k ) -> ( n J x ) = k ) |
|
| 175 | 173 174 | eqtrd | |- ( ( k <_ n /\ ( n J x ) = k ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) = k ) |
| 176 | 170 175 | impbid1 | |- ( k =/= n -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( k <_ n /\ ( n J x ) = k ) ) ) |
| 177 | 176 | adantl | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( k <_ n /\ ( n J x ) = k ) ) ) |
| 178 | eldifi | |- ( k e. ( ran ( G ` n ) \ { 0 } ) -> k e. ran ( G ` n ) ) |
|
| 179 | nnre | |- ( n e. NN -> n e. RR ) |
|
| 180 | 179 | ad2antlr | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> n e. RR ) |
| 181 | 77 180 86 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n ) |
| 182 | 13 | ad2antlr | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> n e. NN0 ) |
| 183 | 182 | nn0ge0d | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> 0 <_ n ) |
| 184 | breq1 | |- ( if ( ( n J x ) <_ n , ( n J x ) , n ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n <-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) <_ n ) ) |
|
| 185 | breq1 | |- ( 0 = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) -> ( 0 <_ n <-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) <_ n ) ) |
|
| 186 | 184 185 | ifboth | |- ( ( if ( ( n J x ) <_ n , ( n J x ) , n ) <_ n /\ 0 <_ n ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) <_ n ) |
| 187 | 181 183 186 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) <_ n ) |
| 188 | 42 187 | eqbrtrd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( G ` n ) ` x ) <_ n ) |
| 189 | 188 | ralrimiva | |- ( ( ph /\ n e. NN ) -> A. x e. RR ( ( G ` n ) ` x ) <_ n ) |
| 190 | 9 | ffnd | |- ( ( ph /\ n e. NN ) -> ( G ` n ) Fn RR ) |
| 191 | breq1 | |- ( k = ( ( G ` n ) ` x ) -> ( k <_ n <-> ( ( G ` n ) ` x ) <_ n ) ) |
|
| 192 | 191 | ralrn | |- ( ( G ` n ) Fn RR -> ( A. k e. ran ( G ` n ) k <_ n <-> A. x e. RR ( ( G ` n ) ` x ) <_ n ) ) |
| 193 | 190 192 | syl | |- ( ( ph /\ n e. NN ) -> ( A. k e. ran ( G ` n ) k <_ n <-> A. x e. RR ( ( G ` n ) ` x ) <_ n ) ) |
| 194 | 189 193 | mpbird | |- ( ( ph /\ n e. NN ) -> A. k e. ran ( G ` n ) k <_ n ) |
| 195 | 194 | r19.21bi | |- ( ( ( ph /\ n e. NN ) /\ k e. ran ( G ` n ) ) -> k <_ n ) |
| 196 | 178 195 | sylan2 | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> k <_ n ) |
| 197 | 196 | ad2antrr | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> k <_ n ) |
| 198 | 197 | biantrurd | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( n J x ) = k <-> ( k <_ n /\ ( n J x ) = k ) ) ) |
| 199 | 126 | eqeq1d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( n J x ) = k <-> ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) = k ) ) |
| 200 | 104 | recnd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) e. CC ) |
| 201 | 28 20 | sstrd | |- ( ( ph /\ n e. NN ) -> ran ( G ` n ) C_ RR ) |
| 202 | 201 | ssdifssd | |- ( ( ph /\ n e. NN ) -> ( ran ( G ` n ) \ { 0 } ) C_ RR ) |
| 203 | 202 | sselda | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> k e. RR ) |
| 204 | 203 | adantr | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> k e. RR ) |
| 205 | 204 | recnd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> k e. CC ) |
| 206 | 100 | nncnd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 2 ^ n ) e. CC ) |
| 207 | 100 | nnne0d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 2 ^ n ) =/= 0 ) |
| 208 | 200 205 206 207 | divmul3d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) / ( 2 ^ n ) ) = k <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) ) ) |
| 209 | 199 208 | bitrd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( n J x ) = k <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) ) ) |
| 210 | 209 | adantr | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( n J x ) = k <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) ) ) |
| 211 | 177 198 210 | 3bitr2d | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( |_ ` ( ( F ` x ) x. ( 2 ^ n ) ) ) = ( k x. ( 2 ^ n ) ) ) ) |
| 212 | ifnefalse | |- ( k =/= n -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) = ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
|
| 213 | 212 | eleq2d | |- ( k =/= n -> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) <-> x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) ) |
| 214 | 100 | nnrecred | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 1 / ( 2 ^ n ) ) e. RR ) |
| 215 | 204 214 | readdcld | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k + ( 1 / ( 2 ^ n ) ) ) e. RR ) |
| 216 | 215 | rexrd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k + ( 1 / ( 2 ^ n ) ) ) e. RR* ) |
| 217 | elioomnf | |- ( ( k + ( 1 / ( 2 ^ n ) ) ) e. RR* -> ( ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
|
| 218 | 216 217 | syl | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
| 219 | 94 | ad2antrr | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> F : RR --> ( 0 [,) +oo ) ) |
| 220 | 219 | ffnd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> F Fn RR ) |
| 221 | elpreima | |- ( F Fn RR -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( x e. RR /\ ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) ) |
|
| 222 | 220 221 | syl | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( x e. RR /\ ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) ) |
| 223 | 116 222 | mpbirand | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( F ` x ) e. ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
| 224 | 99 | biantrurd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) |
| 225 | 218 223 224 | 3bitr4d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) ) ) |
| 226 | ltmul1 | |- ( ( ( F ` x ) e. RR /\ ( k + ( 1 / ( 2 ^ n ) ) ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k + ( 1 / ( 2 ^ n ) ) ) x. ( 2 ^ n ) ) ) ) |
|
| 227 | 99 215 101 105 226 | syl112anc | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) < ( k + ( 1 / ( 2 ^ n ) ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k + ( 1 / ( 2 ^ n ) ) ) x. ( 2 ^ n ) ) ) ) |
| 228 | 214 | recnd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( 1 / ( 2 ^ n ) ) e. CC ) |
| 229 | 206 207 | recid2d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( 1 / ( 2 ^ n ) ) x. ( 2 ^ n ) ) = 1 ) |
| 230 | 229 | oveq2d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( k x. ( 2 ^ n ) ) + ( ( 1 / ( 2 ^ n ) ) x. ( 2 ^ n ) ) ) = ( ( k x. ( 2 ^ n ) ) + 1 ) ) |
| 231 | 205 206 228 230 | joinlmuladdmuld | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( k + ( 1 / ( 2 ^ n ) ) ) x. ( 2 ^ n ) ) = ( ( k x. ( 2 ^ n ) ) + 1 ) ) |
| 232 | 231 | breq2d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k + ( 1 / ( 2 ^ n ) ) ) x. ( 2 ^ n ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) |
| 233 | 225 227 232 | 3bitrd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) |
| 234 | 213 233 | sylan9bbr | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) <-> ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) |
| 235 | lemul1 | |- ( ( k e. RR /\ ( F ` x ) e. RR /\ ( ( 2 ^ n ) e. RR /\ 0 < ( 2 ^ n ) ) ) -> ( k <_ ( F ` x ) <-> ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
|
| 236 | 204 99 101 105 235 | syl112anc | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k <_ ( F ` x ) <-> ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
| 237 | 236 | adantr | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( k <_ ( F ` x ) <-> ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) |
| 238 | 234 237 | anbi12d | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) <-> ( ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) /\ ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) ) ) ) |
| 239 | 238 | biancomd | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) <-> ( ( k x. ( 2 ^ n ) ) <_ ( ( F ` x ) x. ( 2 ^ n ) ) /\ ( ( F ` x ) x. ( 2 ^ n ) ) < ( ( k x. ( 2 ^ n ) ) + 1 ) ) ) ) |
| 240 | 159 211 239 | 3bitr4d | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ k =/= n ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
| 241 | 135 240 | pm2.61dane | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
| 242 | eldif | |- ( x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ -. x e. ( `' F " ( -oo (,) k ) ) ) ) |
|
| 243 | 204 | rexrd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> k e. RR* ) |
| 244 | elioomnf | |- ( k e. RR* -> ( ( F ` x ) e. ( -oo (,) k ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < k ) ) ) |
|
| 245 | 243 244 | syl | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) e. ( -oo (,) k ) <-> ( ( F ` x ) e. RR /\ ( F ` x ) < k ) ) ) |
| 246 | elpreima | |- ( F Fn RR -> ( x e. ( `' F " ( -oo (,) k ) ) <-> ( x e. RR /\ ( F ` x ) e. ( -oo (,) k ) ) ) ) |
|
| 247 | 220 246 | syl | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) k ) ) <-> ( x e. RR /\ ( F ` x ) e. ( -oo (,) k ) ) ) ) |
| 248 | 116 247 | mpbirand | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) k ) ) <-> ( F ` x ) e. ( -oo (,) k ) ) ) |
| 249 | 99 | biantrurd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( F ` x ) < k <-> ( ( F ` x ) e. RR /\ ( F ` x ) < k ) ) ) |
| 250 | 245 248 249 | 3bitr4d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( `' F " ( -oo (,) k ) ) <-> ( F ` x ) < k ) ) |
| 251 | 250 | notbid | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( -. x e. ( `' F " ( -oo (,) k ) ) <-> -. ( F ` x ) < k ) ) |
| 252 | 204 99 | lenltd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( k <_ ( F ` x ) <-> -. ( F ` x ) < k ) ) |
| 253 | 251 252 | bitr4d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( -. x e. ( `' F " ( -oo (,) k ) ) <-> k <_ ( F ` x ) ) ) |
| 254 | 253 | anbi2d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ -. x e. ( `' F " ( -oo (,) k ) ) ) <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
| 255 | 242 254 | bitrid | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) <-> ( x e. if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) /\ k <_ ( F ` x ) ) ) ) |
| 256 | 241 255 | bitr4d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( if ( ( n J x ) <_ n , ( n J x ) , n ) = k <-> x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) |
| 257 | 54 256 | sylan9bbr | |- ( ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) /\ x e. ( -u n [,] n ) ) -> ( if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k <-> x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) |
| 258 | 257 | pm5.32da | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( x e. ( -u n [,] n ) /\ if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k ) <-> ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) |
| 259 | 44 52 258 | 3bitrd | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( G ` n ) ` x ) = k <-> ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) |
| 260 | 259 | pm5.32da | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( x e. RR /\ ( ( G ` n ) ` x ) = k ) <-> ( x e. RR /\ ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) ) |
| 261 | 21 | adantr | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( G ` n ) : RR --> RR ) |
| 262 | 261 | ffnd | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( G ` n ) Fn RR ) |
| 263 | fniniseg | |- ( ( G ` n ) Fn RR -> ( x e. ( `' ( G ` n ) " { k } ) <-> ( x e. RR /\ ( ( G ` n ) ` x ) = k ) ) ) |
|
| 264 | 262 263 | syl | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( `' ( G ` n ) " { k } ) <-> ( x e. RR /\ ( ( G ` n ) ` x ) = k ) ) ) |
| 265 | elin | |- ( x e. ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) <-> ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) |
|
| 266 | 179 | ad2antlr | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> n e. RR ) |
| 267 | 266 | renegcld | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> -u n e. RR ) |
| 268 | iccmbl | |- ( ( -u n e. RR /\ n e. RR ) -> ( -u n [,] n ) e. dom vol ) |
|
| 269 | 267 266 268 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( -u n [,] n ) e. dom vol ) |
| 270 | mblss | |- ( ( -u n [,] n ) e. dom vol -> ( -u n [,] n ) C_ RR ) |
|
| 271 | 269 270 | syl | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( -u n [,] n ) C_ RR ) |
| 272 | 271 | sseld | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( -u n [,] n ) -> x e. RR ) ) |
| 273 | 272 | adantrd | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) -> x e. RR ) ) |
| 274 | 273 | pm4.71rd | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) <-> ( x e. RR /\ ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) ) |
| 275 | 265 274 | bitrid | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) <-> ( x e. RR /\ ( x e. ( -u n [,] n ) /\ x e. ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) ) |
| 276 | 260 264 275 | 3bitr4d | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( `' ( G ` n ) " { k } ) <-> x e. ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) ) |
| 277 | 276 | eqrdv | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( `' ( G ` n ) " { k } ) = ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) ) |
| 278 | rembl | |- RR e. dom vol |
|
| 279 | fss | |- ( ( F : RR --> ( 0 [,) +oo ) /\ ( 0 [,) +oo ) C_ RR ) -> F : RR --> RR ) |
|
| 280 | 2 58 279 | sylancl | |- ( ph -> F : RR --> RR ) |
| 281 | mbfima | |- ( ( F e. MblFn /\ F : RR --> RR ) -> ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) e. dom vol ) |
|
| 282 | 1 280 281 | syl2anc | |- ( ph -> ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) e. dom vol ) |
| 283 | ifcl | |- ( ( RR e. dom vol /\ ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) e. dom vol ) -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) e. dom vol ) |
|
| 284 | 278 282 283 | sylancr | |- ( ph -> if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) e. dom vol ) |
| 285 | mbfima | |- ( ( F e. MblFn /\ F : RR --> RR ) -> ( `' F " ( -oo (,) k ) ) e. dom vol ) |
|
| 286 | 1 280 285 | syl2anc | |- ( ph -> ( `' F " ( -oo (,) k ) ) e. dom vol ) |
| 287 | difmbl | |- ( ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) e. dom vol /\ ( `' F " ( -oo (,) k ) ) e. dom vol ) -> ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) e. dom vol ) |
|
| 288 | 284 286 287 | syl2anc | |- ( ph -> ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) e. dom vol ) |
| 289 | 288 | ad2antrr | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) e. dom vol ) |
| 290 | inmbl | |- ( ( ( -u n [,] n ) e. dom vol /\ ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) e. dom vol ) -> ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) e. dom vol ) |
|
| 291 | 269 289 290 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( -u n [,] n ) i^i ( if ( k = n , RR , ( `' F " ( -oo (,) ( k + ( 1 / ( 2 ^ n ) ) ) ) ) ) \ ( `' F " ( -oo (,) k ) ) ) ) e. dom vol ) |
| 292 | 277 291 | eqeltrd | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( `' ( G ` n ) " { k } ) e. dom vol ) |
| 293 | mblvol | |- ( ( `' ( G ` n ) " { k } ) e. dom vol -> ( vol ` ( `' ( G ` n ) " { k } ) ) = ( vol* ` ( `' ( G ` n ) " { k } ) ) ) |
|
| 294 | 292 293 | syl | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol ` ( `' ( G ` n ) " { k } ) ) = ( vol* ` ( `' ( G ` n ) " { k } ) ) ) |
| 295 | 190 | adantr | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( G ` n ) Fn RR ) |
| 296 | 295 263 | syl | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( `' ( G ` n ) " { k } ) <-> ( x e. RR /\ ( ( G ` n ) ` x ) = k ) ) ) |
| 297 | 77 180 | ifcld | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( ( n J x ) <_ n , ( n J x ) , n ) e. RR ) |
| 298 | 0re | |- 0 e. RR |
|
| 299 | ifcl | |- ( ( if ( ( n J x ) <_ n , ( n J x ) , n ) e. RR /\ 0 e. RR ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. RR ) |
|
| 300 | 297 298 299 | sylancl | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. RR ) |
| 301 | 39 | fvmpt2 | |- ( ( x e. RR /\ if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) e. RR ) -> ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 302 | 33 300 301 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( x e. RR |-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 303 | 32 302 | eqtrd | |- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 304 | 303 | adantlr | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( G ` n ) ` x ) = if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) ) |
| 305 | 304 | eqeq1d | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( G ` n ) ` x ) = k <-> if ( x e. ( -u n [,] n ) , if ( ( n J x ) <_ n , ( n J x ) , n ) , 0 ) = k ) ) |
| 306 | 305 51 | sylbid | |- ( ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) /\ x e. RR ) -> ( ( ( G ` n ) ` x ) = k -> x e. ( -u n [,] n ) ) ) |
| 307 | 306 | expimpd | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( ( x e. RR /\ ( ( G ` n ) ` x ) = k ) -> x e. ( -u n [,] n ) ) ) |
| 308 | 296 307 | sylbid | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( x e. ( `' ( G ` n ) " { k } ) -> x e. ( -u n [,] n ) ) ) |
| 309 | 308 | ssrdv | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( `' ( G ` n ) " { k } ) C_ ( -u n [,] n ) ) |
| 310 | iccssre | |- ( ( -u n e. RR /\ n e. RR ) -> ( -u n [,] n ) C_ RR ) |
|
| 311 | 267 266 310 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( -u n [,] n ) C_ RR ) |
| 312 | mblvol | |- ( ( -u n [,] n ) e. dom vol -> ( vol ` ( -u n [,] n ) ) = ( vol* ` ( -u n [,] n ) ) ) |
|
| 313 | 269 312 | syl | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol ` ( -u n [,] n ) ) = ( vol* ` ( -u n [,] n ) ) ) |
| 314 | iccvolcl | |- ( ( -u n e. RR /\ n e. RR ) -> ( vol ` ( -u n [,] n ) ) e. RR ) |
|
| 315 | 267 266 314 | syl2anc | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol ` ( -u n [,] n ) ) e. RR ) |
| 316 | 313 315 | eqeltrrd | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol* ` ( -u n [,] n ) ) e. RR ) |
| 317 | ovolsscl | |- ( ( ( `' ( G ` n ) " { k } ) C_ ( -u n [,] n ) /\ ( -u n [,] n ) C_ RR /\ ( vol* ` ( -u n [,] n ) ) e. RR ) -> ( vol* ` ( `' ( G ` n ) " { k } ) ) e. RR ) |
|
| 318 | 309 311 316 317 | syl3anc | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol* ` ( `' ( G ` n ) " { k } ) ) e. RR ) |
| 319 | 294 318 | eqeltrd | |- ( ( ( ph /\ n e. NN ) /\ k e. ( ran ( G ` n ) \ { 0 } ) ) -> ( vol ` ( `' ( G ` n ) " { k } ) ) e. RR ) |
| 320 | 21 29 292 319 | i1fd | |- ( ( ph /\ n e. NN ) -> ( G ` n ) e. dom S.1 ) |
| 321 | 320 | ralrimiva | |- ( ph -> A. n e. NN ( G ` n ) e. dom S.1 ) |
| 322 | ffnfv | |- ( G : NN --> dom S.1 <-> ( G Fn NN /\ A. n e. NN ( G ` n ) e. dom S.1 ) ) |
|
| 323 | 8 321 322 | sylanbrc | |- ( ph -> G : NN --> dom S.1 ) |