This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mbfi1fseq . (Contributed by Mario Carneiro, 16-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfi1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfi1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| mbfi1fseq.3 | ⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) | ||
| mbfi1fseq.4 | ⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) | ||
| Assertion | mbfi1fseqlem3 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ 𝐴 ) : ℝ ⟶ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfi1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 3 | mbfi1fseq.3 | ⊢ 𝐽 = ( 𝑚 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ) | |
| 4 | mbfi1fseq.4 | ⊢ 𝐺 = ( 𝑚 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 𝐽 𝑥 ) ≤ 𝑚 , ( 𝑚 𝐽 𝑥 ) , 𝑚 ) , 0 ) ) ) | |
| 5 | 1 2 3 4 | mbfi1fseqlem2 | ⊢ ( 𝐴 ∈ ℕ → ( 𝐺 ‘ 𝐴 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ 𝐴 ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ) ) |
| 7 | rge0ssre | ⊢ ( 0 [,) +∞ ) ⊆ ℝ | |
| 8 | simpr | ⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℝ ) | |
| 9 | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) | |
| 10 | 2 8 9 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 0 [,) +∞ ) ) |
| 11 | 7 10 | sselid | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ℝ ) |
| 12 | 2nn | ⊢ 2 ∈ ℕ | |
| 13 | nnnn0 | ⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℕ0 ) | |
| 14 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑚 ∈ ℕ0 ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) | |
| 15 | 12 13 14 | sylancr | ⊢ ( 𝑚 ∈ ℕ → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 16 | 15 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℕ ) |
| 17 | 16 | nnred | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( 2 ↑ 𝑚 ) ∈ ℝ ) |
| 18 | 11 17 | remulcld | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
| 19 | reflcl | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ∈ ℝ → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) | |
| 20 | 18 19 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) ∈ ℝ ) |
| 21 | 20 16 | nndivred | ⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℕ ∧ 𝑦 ∈ ℝ ) ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
| 22 | 21 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ) |
| 23 | 3 | fmpo | ⊢ ( ∀ 𝑚 ∈ ℕ ∀ 𝑦 ∈ ℝ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) ∈ ℝ ↔ 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ) |
| 24 | 22 23 | sylib | ⊢ ( 𝜑 → 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ) |
| 25 | fovcdm | ⊢ ( ( 𝐽 : ( ℕ × ℝ ) ⟶ ℝ ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) ∈ ℝ ) | |
| 26 | 24 25 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) ∈ ℝ ) |
| 27 | 26 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) ∈ ℝ ) |
| 28 | nnre | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) | |
| 29 | 28 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
| 30 | nnnn0 | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) | |
| 31 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝐴 ∈ ℕ0 ) → ( 2 ↑ 𝐴 ) ∈ ℕ ) | |
| 32 | 12 30 31 | sylancr | ⊢ ( 𝐴 ∈ ℕ → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
| 33 | 32 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
| 34 | nnre | ⊢ ( ( 2 ↑ 𝐴 ) ∈ ℕ → ( 2 ↑ 𝐴 ) ∈ ℝ ) | |
| 35 | nngt0 | ⊢ ( ( 2 ↑ 𝐴 ) ∈ ℕ → 0 < ( 2 ↑ 𝐴 ) ) | |
| 36 | 34 35 | jca | ⊢ ( ( 2 ↑ 𝐴 ) ∈ ℕ → ( ( 2 ↑ 𝐴 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐴 ) ) ) |
| 37 | 33 36 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 2 ↑ 𝐴 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐴 ) ) ) |
| 38 | lemul1 | ⊢ ( ( ( 𝐴 𝐽 𝑥 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( ( 2 ↑ 𝐴 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝐴 ) ) ) → ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ↔ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ≤ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) | |
| 39 | 27 29 37 38 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ↔ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ≤ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
| 40 | 39 | biimpa | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ≤ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) |
| 41 | simpr | ⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → 𝑦 = 𝑥 ) | |
| 42 | 41 | fveq2d | ⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 43 | simpl | ⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → 𝑚 = 𝐴 ) | |
| 44 | 43 | oveq2d | ⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝐴 ) ) |
| 45 | 42 44 | oveq12d | ⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) = ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) |
| 46 | 45 | fveq2d | ⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ) |
| 47 | 46 44 | oveq12d | ⊢ ( ( 𝑚 = 𝐴 ∧ 𝑦 = 𝑥 ) → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑚 ) ) ) / ( 2 ↑ 𝑚 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
| 48 | ovex | ⊢ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ∈ V | |
| 49 | 47 3 48 | ovmpoa | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑥 ∈ ℝ ) → ( 𝐴 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
| 50 | 49 | ad4ant23 | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 𝐴 𝐽 𝑥 ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) ) |
| 51 | 50 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) = ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ 𝐴 ) ) ) |
| 52 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 53 | 52 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ) |
| 54 | elrege0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 55 | 53 54 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 56 | 55 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 57 | 33 | nnred | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℝ ) |
| 58 | 56 57 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ℝ ) |
| 59 | 33 | nnnn0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℕ0 ) |
| 60 | 59 | nn0ge0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( 2 ↑ 𝐴 ) ) |
| 61 | mulge0 | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ∧ ( ( 2 ↑ 𝐴 ) ∈ ℝ ∧ 0 ≤ ( 2 ↑ 𝐴 ) ) ) → 0 ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) | |
| 62 | 55 57 60 61 | syl12anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) |
| 63 | flge0nn0 | ⊢ ( ( ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ℝ ∧ 0 ≤ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℕ0 ) | |
| 64 | 58 62 63 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℕ0 ) |
| 65 | 64 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℕ0 ) |
| 66 | 65 | nn0cnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ℂ ) |
| 67 | 33 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
| 68 | 67 | nncnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 2 ↑ 𝐴 ) ∈ ℂ ) |
| 69 | 67 | nnne0d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 2 ↑ 𝐴 ) ≠ 0 ) |
| 70 | 66 68 69 | divcan1d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) / ( 2 ↑ 𝐴 ) ) · ( 2 ↑ 𝐴 ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ) |
| 71 | 51 70 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ) |
| 72 | 71 65 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ℕ0 ) |
| 73 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 74 | 72 73 | eleqtrdi | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 75 | nnmulcl | ⊢ ( ( 𝐴 ∈ ℕ ∧ ( 2 ↑ 𝐴 ) ∈ ℕ ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ℕ ) | |
| 76 | 32 75 | mpdan | ⊢ ( 𝐴 ∈ ℕ → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ℕ ) |
| 77 | 76 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ℕ ) |
| 78 | 77 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ℕ ) |
| 79 | 78 | nnzd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ℤ ) |
| 80 | elfz5 | ⊢ ( ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ℤ ) → ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↔ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ≤ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) | |
| 81 | 74 79 80 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↔ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ≤ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
| 82 | 40 81 | mpbird | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
| 83 | oveq1 | ⊢ ( 𝑚 = ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) → ( 𝑚 / ( 2 ↑ 𝐴 ) ) = ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ) | |
| 84 | eqid | ⊢ ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) = ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) | |
| 85 | ovex | ⊢ ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ∈ V | |
| 86 | 83 84 85 | fvmpt | ⊢ ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) = ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ) |
| 87 | 82 86 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) = ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ) |
| 88 | 27 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 𝐴 𝐽 𝑥 ) ∈ ℝ ) |
| 89 | 88 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 𝐴 𝐽 𝑥 ) ∈ ℂ ) |
| 90 | 89 68 69 | divcan4d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) = ( 𝐴 𝐽 𝑥 ) ) |
| 91 | 87 90 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) = ( 𝐴 𝐽 𝑥 ) ) |
| 92 | elfznn0 | ⊢ ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) → 𝑚 ∈ ℕ0 ) | |
| 93 | 92 | nn0red | ⊢ ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) → 𝑚 ∈ ℝ ) |
| 94 | 32 | adantl | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 2 ↑ 𝐴 ) ∈ ℕ ) |
| 95 | nndivre | ⊢ ( ( 𝑚 ∈ ℝ ∧ ( 2 ↑ 𝐴 ) ∈ ℕ ) → ( 𝑚 / ( 2 ↑ 𝐴 ) ) ∈ ℝ ) | |
| 96 | 93 94 95 | syl2anr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) → ( 𝑚 / ( 2 ↑ 𝐴 ) ) ∈ ℝ ) |
| 97 | 96 | fmpttd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) : ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ⟶ ℝ ) |
| 98 | 97 | ffnd | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) Fn ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
| 99 | 98 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) Fn ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
| 100 | 99 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) Fn ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
| 101 | fnfvelrn | ⊢ ( ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) Fn ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ∧ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) | |
| 102 | 100 82 101 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( ( 𝐴 𝐽 𝑥 ) · ( 2 ↑ 𝐴 ) ) ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
| 103 | 91 102 | eqeltrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → ( 𝐴 𝐽 𝑥 ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
| 104 | 77 | nnnn0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ℕ0 ) |
| 105 | 104 73 | eleqtrdi | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 106 | eluzfz2 | ⊢ ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ( ℤ≥ ‘ 0 ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) | |
| 107 | 105 106 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
| 108 | oveq1 | ⊢ ( 𝑚 = ( 𝐴 · ( 2 ↑ 𝐴 ) ) → ( 𝑚 / ( 2 ↑ 𝐴 ) ) = ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ) | |
| 109 | ovex | ⊢ ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ∈ V | |
| 110 | 108 84 109 | fvmpt | ⊢ ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) = ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ) |
| 111 | 107 110 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) = ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) ) |
| 112 | 29 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 113 | 33 | nncnd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ∈ ℂ ) |
| 114 | 33 | nnne0d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 2 ↑ 𝐴 ) ≠ 0 ) |
| 115 | 112 113 114 | divcan4d | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) / ( 2 ↑ 𝐴 ) ) = 𝐴 ) |
| 116 | 111 115 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) = 𝐴 ) |
| 117 | fnfvelrn | ⊢ ( ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) Fn ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ∧ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) | |
| 118 | 99 107 117 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
| 119 | 116 118 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 𝐴 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
| 120 | 119 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) ∧ ¬ ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 ) → 𝐴 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
| 121 | 103 120 | ifclda | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
| 122 | eluzfz1 | ⊢ ( ( 𝐴 · ( 2 ↑ 𝐴 ) ) ∈ ( ℤ≥ ‘ 0 ) → 0 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) | |
| 123 | 105 122 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) |
| 124 | oveq1 | ⊢ ( 𝑚 = 0 → ( 𝑚 / ( 2 ↑ 𝐴 ) ) = ( 0 / ( 2 ↑ 𝐴 ) ) ) | |
| 125 | ovex | ⊢ ( 0 / ( 2 ↑ 𝐴 ) ) ∈ V | |
| 126 | 124 84 125 | fvmpt | ⊢ ( 0 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ 0 ) = ( 0 / ( 2 ↑ 𝐴 ) ) ) |
| 127 | 123 126 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ 0 ) = ( 0 / ( 2 ↑ 𝐴 ) ) ) |
| 128 | nncn | ⊢ ( ( 2 ↑ 𝐴 ) ∈ ℕ → ( 2 ↑ 𝐴 ) ∈ ℂ ) | |
| 129 | nnne0 | ⊢ ( ( 2 ↑ 𝐴 ) ∈ ℕ → ( 2 ↑ 𝐴 ) ≠ 0 ) | |
| 130 | 128 129 | div0d | ⊢ ( ( 2 ↑ 𝐴 ) ∈ ℕ → ( 0 / ( 2 ↑ 𝐴 ) ) = 0 ) |
| 131 | 33 130 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( 0 / ( 2 ↑ 𝐴 ) ) = 0 ) |
| 132 | 127 131 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ 0 ) = 0 ) |
| 133 | fnfvelrn | ⊢ ( ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) Fn ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ∧ 0 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ 0 ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) | |
| 134 | 99 123 133 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ‘ 0 ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
| 135 | 132 134 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → 0 ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
| 136 | 121 135 | ifcld | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ ( - 𝐴 [,] 𝐴 ) , if ( ( 𝐴 𝐽 𝑥 ) ≤ 𝐴 , ( 𝐴 𝐽 𝑥 ) , 𝐴 ) , 0 ) ∈ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |
| 137 | 6 136 | fmpt3d | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℕ ) → ( 𝐺 ‘ 𝐴 ) : ℝ ⟶ ran ( 𝑚 ∈ ( 0 ... ( 𝐴 · ( 2 ↑ 𝐴 ) ) ) ↦ ( 𝑚 / ( 2 ↑ 𝐴 ) ) ) ) |