This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A characterization of measurability in terms of simple functions (this is an if and only if for nonnegative functions, although we don't prove it). Any nonnegative measurable function is the limit of an increasing sequence of nonnegative simple functions. This proof is an example of a poor de Bruijn factor - the formalized proof is much longer than an average hand proof, which usually just describes the function G and "leaves the details as an exercise to the reader". (Contributed by Mario Carneiro, 16-Aug-2014) (Revised by Mario Carneiro, 23-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfi1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| mbfi1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | ||
| Assertion | mbfi1fseq | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfi1fseq.1 | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) | |
| 2 | mbfi1fseq.2 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ( 0 [,) +∞ ) ) | |
| 3 | oveq2 | ⊢ ( 𝑗 = 𝑘 → ( 2 ↑ 𝑗 ) = ( 2 ↑ 𝑘 ) ) | |
| 4 | 3 | oveq2d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) = ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑘 ) ) ) |
| 5 | 4 | fveq2d | ⊢ ( 𝑗 = 𝑘 → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑘 ) ) ) ) |
| 6 | 5 3 | oveq12d | ⊢ ( 𝑗 = 𝑘 → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑘 ) ) ) / ( 2 ↑ 𝑘 ) ) ) |
| 7 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 8 | 7 | fvoveq1d | ⊢ ( 𝑧 = 𝑦 → ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑘 ) ) ) = ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑘 ) ) ) ) |
| 9 | 8 | oveq1d | ⊢ ( 𝑧 = 𝑦 → ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑘 ) ) ) / ( 2 ↑ 𝑘 ) ) = ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑘 ) ) ) / ( 2 ↑ 𝑘 ) ) ) |
| 10 | 6 9 | cbvmpov | ⊢ ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) = ( 𝑘 ∈ ℕ , 𝑦 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑦 ) · ( 2 ↑ 𝑘 ) ) ) / ( 2 ↑ 𝑘 ) ) ) |
| 11 | eleq1w | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ ( - 𝑚 [,] 𝑚 ) ↔ 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) ) ) | |
| 12 | oveq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑦 ) = ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ) | |
| 13 | 12 | breq1d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑦 ) ≤ 𝑚 ↔ ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ≤ 𝑚 ) ) |
| 14 | 13 12 | ifbieq1d | ⊢ ( 𝑦 = 𝑥 → if ( ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑦 ) ≤ 𝑚 , ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑦 ) , 𝑚 ) = if ( ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ≤ 𝑚 , ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) , 𝑚 ) ) |
| 15 | 11 14 | ifbieq1d | ⊢ ( 𝑦 = 𝑥 → if ( 𝑦 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑦 ) ≤ 𝑚 , ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑦 ) , 𝑚 ) , 0 ) = if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ≤ 𝑚 , ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) , 𝑚 ) , 0 ) ) |
| 16 | 15 | cbvmptv | ⊢ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑦 ) ≤ 𝑚 , ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑦 ) , 𝑚 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ≤ 𝑚 , ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) , 𝑚 ) , 0 ) ) |
| 17 | negeq | ⊢ ( 𝑚 = 𝑘 → - 𝑚 = - 𝑘 ) | |
| 18 | id | ⊢ ( 𝑚 = 𝑘 → 𝑚 = 𝑘 ) | |
| 19 | 17 18 | oveq12d | ⊢ ( 𝑚 = 𝑘 → ( - 𝑚 [,] 𝑚 ) = ( - 𝑘 [,] 𝑘 ) ) |
| 20 | 19 | eleq2d | ⊢ ( 𝑚 = 𝑘 → ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) ↔ 𝑥 ∈ ( - 𝑘 [,] 𝑘 ) ) ) |
| 21 | oveq1 | ⊢ ( 𝑚 = 𝑘 → ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) = ( 𝑘 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ) | |
| 22 | 21 18 | breq12d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ≤ 𝑚 ↔ ( 𝑘 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ≤ 𝑘 ) ) |
| 23 | 22 21 18 | ifbieq12d | ⊢ ( 𝑚 = 𝑘 → if ( ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ≤ 𝑚 , ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) , 𝑚 ) = if ( ( 𝑘 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ≤ 𝑘 , ( 𝑘 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) , 𝑘 ) ) |
| 24 | 20 23 | ifbieq1d | ⊢ ( 𝑚 = 𝑘 → if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ≤ 𝑚 , ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) , 𝑚 ) , 0 ) = if ( 𝑥 ∈ ( - 𝑘 [,] 𝑘 ) , if ( ( 𝑘 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ≤ 𝑘 , ( 𝑘 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) , 𝑘 ) , 0 ) ) |
| 25 | 24 | mpteq2dv | ⊢ ( 𝑚 = 𝑘 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ≤ 𝑚 , ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) , 𝑚 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑘 [,] 𝑘 ) , if ( ( 𝑘 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ≤ 𝑘 , ( 𝑘 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) , 𝑘 ) , 0 ) ) ) |
| 26 | 16 25 | eqtrid | ⊢ ( 𝑚 = 𝑘 → ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑦 ) ≤ 𝑚 , ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑦 ) , 𝑚 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑘 [,] 𝑘 ) , if ( ( 𝑘 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ≤ 𝑘 , ( 𝑘 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) , 𝑘 ) , 0 ) ) ) |
| 27 | 26 | cbvmptv | ⊢ ( 𝑚 ∈ ℕ ↦ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ ( - 𝑚 [,] 𝑚 ) , if ( ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑦 ) ≤ 𝑚 , ( 𝑚 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑦 ) , 𝑚 ) , 0 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ ( - 𝑘 [,] 𝑘 ) , if ( ( 𝑘 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) ≤ 𝑘 , ( 𝑘 ( 𝑗 ∈ ℕ , 𝑧 ∈ ℝ ↦ ( ( ⌊ ‘ ( ( 𝐹 ‘ 𝑧 ) · ( 2 ↑ 𝑗 ) ) ) / ( 2 ↑ 𝑗 ) ) ) 𝑥 ) , 𝑘 ) , 0 ) ) ) |
| 28 | 1 2 10 27 | mbfi1fseqlem6 | ⊢ ( 𝜑 → ∃ 𝑔 ( 𝑔 : ℕ ⟶ dom ∫1 ∧ ∀ 𝑛 ∈ ℕ ( 0𝑝 ∘r ≤ ( 𝑔 ‘ 𝑛 ) ∧ ( 𝑔 ‘ 𝑛 ) ∘r ≤ ( 𝑔 ‘ ( 𝑛 + 1 ) ) ) ∧ ∀ 𝑥 ∈ ℝ ( 𝑛 ∈ ℕ ↦ ( ( 𝑔 ‘ 𝑛 ) ‘ 𝑥 ) ) ⇝ ( 𝐹 ‘ 𝑥 ) ) ) |