This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lemul1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmul1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 < 𝐵 ↔ ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ) ) | |
| 2 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 3 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 4 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ∈ ℂ ) |
| 6 | gt0ne0 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ≠ 0 ) | |
| 7 | 5 6 | jca | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) |
| 8 | mulcan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ↔ 𝐴 = 𝐵 ) ) | |
| 9 | 2 3 7 8 | syl3an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| 10 | 9 | bicomd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 = 𝐵 ↔ ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ) ) |
| 11 | 1 10 | orbi12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ∨ ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ) ) ) |
| 12 | leloe | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) | |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ) ) ) |
| 14 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 · 𝐶 ) ∈ ℝ ) | |
| 15 | 14 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 · 𝐶 ) ∈ ℝ ) |
| 16 | remulcl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) | |
| 17 | 16 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 · 𝐶 ) ∈ ℝ ) |
| 18 | 15 17 | leloed | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ↔ ( ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ∨ ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ) ) ) |
| 19 | 18 | 3adant3r | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ↔ ( ( 𝐴 · 𝐶 ) < ( 𝐵 · 𝐶 ) ∨ ( 𝐴 · 𝐶 ) = ( 𝐵 · 𝐶 ) ) ) ) |
| 20 | 11 13 19 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐴 · 𝐶 ) ≤ ( 𝐵 · 𝐶 ) ) ) |