This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the preimage of a singleton, under a function. (Contributed by Mario Carneiro, 12-May-2014) (Proof shortened by Mario Carneiro , 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fniniseg | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐶 ∈ ( ◡ 𝐹 “ { 𝐵 } ) ↔ ( 𝐶 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝐶 ) = 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpreima | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐶 ∈ ( ◡ 𝐹 “ { 𝐵 } ) ↔ ( 𝐶 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝐶 ) ∈ { 𝐵 } ) ) ) | |
| 2 | fvex | ⊢ ( 𝐹 ‘ 𝐶 ) ∈ V | |
| 3 | 2 | elsn | ⊢ ( ( 𝐹 ‘ 𝐶 ) ∈ { 𝐵 } ↔ ( 𝐹 ‘ 𝐶 ) = 𝐵 ) |
| 4 | 3 | anbi2i | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝐶 ) ∈ { 𝐵 } ) ↔ ( 𝐶 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝐶 ) = 𝐵 ) ) |
| 5 | 1 4 | bitrdi | ⊢ ( 𝐹 Fn 𝐴 → ( 𝐶 ∈ ( ◡ 𝐹 “ { 𝐵 } ) ↔ ( 𝐶 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝐶 ) = 𝐵 ) ) ) |