This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iccmbl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 2 | dfss4 | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) = ( 𝐴 [,] 𝐵 ) ) | |
| 3 | 1 2 | sylib | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℝ ∖ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) = ( 𝐴 [,] 𝐵 ) ) |
| 4 | difreicc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) = ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ) | |
| 5 | ioombl | ⊢ ( -∞ (,) 𝐴 ) ∈ dom vol | |
| 6 | ioombl | ⊢ ( 𝐵 (,) +∞ ) ∈ dom vol | |
| 7 | unmbl | ⊢ ( ( ( -∞ (,) 𝐴 ) ∈ dom vol ∧ ( 𝐵 (,) +∞ ) ∈ dom vol ) → ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ∈ dom vol ) | |
| 8 | 5 6 7 | mp2an | ⊢ ( ( -∞ (,) 𝐴 ) ∪ ( 𝐵 (,) +∞ ) ) ∈ dom vol |
| 9 | 4 8 | eqeltrdi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ∈ dom vol ) |
| 10 | cmmbl | ⊢ ( ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ∈ dom vol → ( ℝ ∖ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ∈ dom vol ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ℝ ∖ ( ℝ ∖ ( 𝐴 [,] 𝐵 ) ) ) ∈ dom vol ) |
| 12 | 3 11 | eqeltrrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ∈ dom vol ) |