This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simplified set of assumptions to show that a given function is simple. (Contributed by Mario Carneiro, 26-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | i1fd.1 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) | |
| i1fd.2 | ⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) | ||
| i1fd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) | ||
| i1fd.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) | ||
| Assertion | i1fd | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1fd.1 | ⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) | |
| 2 | i1fd.2 | ⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) | |
| 3 | i1fd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) | |
| 4 | i1fd.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) | |
| 5 | 1 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → 𝐹 : ℝ ⟶ ℝ ) |
| 6 | ffun | ⊢ ( 𝐹 : ℝ ⟶ ℝ → Fun 𝐹 ) | |
| 7 | funcnvcnv | ⊢ ( Fun 𝐹 → Fun ◡ ◡ 𝐹 ) | |
| 8 | imadif | ⊢ ( Fun ◡ ◡ 𝐹 → ( ◡ 𝐹 “ ( ℝ ∖ ( ℝ ∖ 𝑥 ) ) ) = ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ) ) | |
| 9 | 5 6 7 8 | 4syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ ( ℝ ∖ ( ℝ ∖ 𝑥 ) ) ) = ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ) ) |
| 10 | ioof | ⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ | |
| 11 | frn | ⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → ran (,) ⊆ 𝒫 ℝ ) | |
| 12 | 10 11 | ax-mp | ⊢ ran (,) ⊆ 𝒫 ℝ |
| 13 | 12 | sseli | ⊢ ( 𝑥 ∈ ran (,) → 𝑥 ∈ 𝒫 ℝ ) |
| 14 | 13 | elpwid | ⊢ ( 𝑥 ∈ ran (,) → 𝑥 ⊆ ℝ ) |
| 15 | 14 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → 𝑥 ⊆ ℝ ) |
| 16 | dfss4 | ⊢ ( 𝑥 ⊆ ℝ ↔ ( ℝ ∖ ( ℝ ∖ 𝑥 ) ) = 𝑥 ) | |
| 17 | 15 16 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ℝ ∖ ( ℝ ∖ 𝑥 ) ) = 𝑥 ) |
| 18 | 17 | imaeq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ ( ℝ ∖ ( ℝ ∖ 𝑥 ) ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 19 | 9 18 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ) = ( ◡ 𝐹 “ 𝑥 ) ) |
| 20 | fimacnv | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ( ◡ 𝐹 “ ℝ ) = ℝ ) | |
| 21 | 5 20 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ ℝ ) = ℝ ) |
| 22 | rembl | ⊢ ℝ ∈ dom vol | |
| 23 | 21 22 | eqeltrdi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ ℝ ) ∈ dom vol ) |
| 24 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → 𝐹 : ℝ ⟶ ℝ ) |
| 25 | inpreima | ⊢ ( Fun 𝐹 → ( ◡ 𝐹 “ ( 𝑦 ∩ ran 𝐹 ) ) = ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) ) | |
| 26 | iunid | ⊢ ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) { 𝑥 } = ( 𝑦 ∩ ran 𝐹 ) | |
| 27 | 26 | imaeq2i | ⊢ ( ◡ 𝐹 “ ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) { 𝑥 } ) = ( ◡ 𝐹 “ ( 𝑦 ∩ ran 𝐹 ) ) |
| 28 | imaiun | ⊢ ( ◡ 𝐹 “ ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) { 𝑥 } ) = ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) | |
| 29 | 27 28 | eqtr3i | ⊢ ( ◡ 𝐹 “ ( 𝑦 ∩ ran 𝐹 ) ) = ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) |
| 30 | cnvimass | ⊢ ( ◡ 𝐹 “ 𝑦 ) ⊆ dom 𝐹 | |
| 31 | cnvimarndm | ⊢ ( ◡ 𝐹 “ ran 𝐹 ) = dom 𝐹 | |
| 32 | 30 31 | sseqtrri | ⊢ ( ◡ 𝐹 “ 𝑦 ) ⊆ ( ◡ 𝐹 “ ran 𝐹 ) |
| 33 | dfss2 | ⊢ ( ( ◡ 𝐹 “ 𝑦 ) ⊆ ( ◡ 𝐹 “ ran 𝐹 ) ↔ ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) = ( ◡ 𝐹 “ 𝑦 ) ) | |
| 34 | 32 33 | mpbi | ⊢ ( ( ◡ 𝐹 “ 𝑦 ) ∩ ( ◡ 𝐹 “ ran 𝐹 ) ) = ( ◡ 𝐹 “ 𝑦 ) |
| 35 | 25 29 34 | 3eqtr3g | ⊢ ( Fun 𝐹 → ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) = ( ◡ 𝐹 “ 𝑦 ) ) |
| 36 | 24 6 35 | 3syl | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) = ( ◡ 𝐹 “ 𝑦 ) ) |
| 37 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ran 𝐹 ∈ Fin ) |
| 38 | inss2 | ⊢ ( 𝑦 ∩ ran 𝐹 ) ⊆ ran 𝐹 | |
| 39 | ssfi | ⊢ ( ( ran 𝐹 ∈ Fin ∧ ( 𝑦 ∩ ran 𝐹 ) ⊆ ran 𝐹 ) → ( 𝑦 ∩ ran 𝐹 ) ∈ Fin ) | |
| 40 | 37 38 39 | sylancl | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( 𝑦 ∩ ran 𝐹 ) ∈ Fin ) |
| 41 | simpll | ⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → 𝜑 ) | |
| 42 | elinel1 | ⊢ ( 0 ∈ ( 𝑦 ∩ ran 𝐹 ) → 0 ∈ 𝑦 ) | |
| 43 | 42 | con3i | ⊢ ( ¬ 0 ∈ 𝑦 → ¬ 0 ∈ ( 𝑦 ∩ ran 𝐹 ) ) |
| 44 | 43 | adantl | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ¬ 0 ∈ ( 𝑦 ∩ ran 𝐹 ) ) |
| 45 | disjsn | ⊢ ( ( ( 𝑦 ∩ ran 𝐹 ) ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ ( 𝑦 ∩ ran 𝐹 ) ) | |
| 46 | 44 45 | sylibr | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( ( 𝑦 ∩ ran 𝐹 ) ∩ { 0 } ) = ∅ ) |
| 47 | reldisj | ⊢ ( ( 𝑦 ∩ ran 𝐹 ) ⊆ ran 𝐹 → ( ( ( 𝑦 ∩ ran 𝐹 ) ∩ { 0 } ) = ∅ ↔ ( 𝑦 ∩ ran 𝐹 ) ⊆ ( ran 𝐹 ∖ { 0 } ) ) ) | |
| 48 | 38 47 | ax-mp | ⊢ ( ( ( 𝑦 ∩ ran 𝐹 ) ∩ { 0 } ) = ∅ ↔ ( 𝑦 ∩ ran 𝐹 ) ⊆ ( ran 𝐹 ∖ { 0 } ) ) |
| 49 | 46 48 | sylib | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( 𝑦 ∩ ran 𝐹 ) ⊆ ( ran 𝐹 ∖ { 0 } ) ) |
| 50 | 49 | sselda | ⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) |
| 51 | 41 50 3 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) |
| 52 | 51 | ralrimiva | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ∀ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) |
| 53 | finiunmbl | ⊢ ( ( ( 𝑦 ∩ ran 𝐹 ) ∈ Fin ∧ ∀ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) → ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) | |
| 54 | 40 52 53 | syl2anc | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) |
| 55 | 36 54 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) |
| 56 | 55 | ex | ⊢ ( 𝜑 → ( ¬ 0 ∈ 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) ) |
| 57 | 56 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑦 ( ¬ 0 ∈ 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) ) |
| 58 | 57 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ∀ 𝑦 ( ¬ 0 ∈ 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) ) |
| 59 | elndif | ⊢ ( 0 ∈ 𝑥 → ¬ 0 ∈ ( ℝ ∖ 𝑥 ) ) | |
| 60 | 59 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ¬ 0 ∈ ( ℝ ∖ 𝑥 ) ) |
| 61 | reex | ⊢ ℝ ∈ V | |
| 62 | 61 | difexi | ⊢ ( ℝ ∖ 𝑥 ) ∈ V |
| 63 | eleq2 | ⊢ ( 𝑦 = ( ℝ ∖ 𝑥 ) → ( 0 ∈ 𝑦 ↔ 0 ∈ ( ℝ ∖ 𝑥 ) ) ) | |
| 64 | 63 | notbid | ⊢ ( 𝑦 = ( ℝ ∖ 𝑥 ) → ( ¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ ( ℝ ∖ 𝑥 ) ) ) |
| 65 | imaeq2 | ⊢ ( 𝑦 = ( ℝ ∖ 𝑥 ) → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ) | |
| 66 | 65 | eleq1d | ⊢ ( 𝑦 = ( ℝ ∖ 𝑥 ) → ( ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ↔ ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ∈ dom vol ) ) |
| 67 | 64 66 | imbi12d | ⊢ ( 𝑦 = ( ℝ ∖ 𝑥 ) → ( ( ¬ 0 ∈ 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) ↔ ( ¬ 0 ∈ ( ℝ ∖ 𝑥 ) → ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ∈ dom vol ) ) ) |
| 68 | 62 67 | spcv | ⊢ ( ∀ 𝑦 ( ¬ 0 ∈ 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) → ( ¬ 0 ∈ ( ℝ ∖ 𝑥 ) → ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ∈ dom vol ) ) |
| 69 | 58 60 68 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ∈ dom vol ) |
| 70 | difmbl | ⊢ ( ( ( ◡ 𝐹 “ ℝ ) ∈ dom vol ∧ ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ∈ dom vol ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ) ∈ dom vol ) | |
| 71 | 23 69 70 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ( ◡ 𝐹 “ ℝ ) ∖ ( ◡ 𝐹 “ ( ℝ ∖ 𝑥 ) ) ) ∈ dom vol ) |
| 72 | 19 71 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
| 73 | eleq2 | ⊢ ( 𝑦 = 𝑥 → ( 0 ∈ 𝑦 ↔ 0 ∈ 𝑥 ) ) | |
| 74 | 73 | notbid | ⊢ ( 𝑦 = 𝑥 → ( ¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ 𝑥 ) ) |
| 75 | imaeq2 | ⊢ ( 𝑦 = 𝑥 → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ 𝑥 ) ) | |
| 76 | 75 | eleq1d | ⊢ ( 𝑦 = 𝑥 → ( ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ↔ ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
| 77 | 74 76 | imbi12d | ⊢ ( 𝑦 = 𝑥 → ( ( ¬ 0 ∈ 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) ↔ ( ¬ 0 ∈ 𝑥 → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) ) |
| 78 | 77 | spvv | ⊢ ( ∀ 𝑦 ( ¬ 0 ∈ 𝑦 → ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol ) → ( ¬ 0 ∈ 𝑥 → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
| 79 | 57 78 | syl | ⊢ ( 𝜑 → ( ¬ 0 ∈ 𝑥 → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
| 80 | 79 | imp | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
| 81 | 80 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) ∧ ¬ 0 ∈ 𝑥 ) → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
| 82 | 72 81 | pm2.61dan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ran (,) ) → ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
| 83 | 82 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) |
| 84 | ismbf | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) | |
| 85 | 1 84 | syl | ⊢ ( 𝜑 → ( 𝐹 ∈ MblFn ↔ ∀ 𝑥 ∈ ran (,) ( ◡ 𝐹 “ 𝑥 ) ∈ dom vol ) ) |
| 86 | 83 85 | mpbird | ⊢ ( 𝜑 → 𝐹 ∈ MblFn ) |
| 87 | mblvol | ⊢ ( ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) = ( vol* ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) | |
| 88 | 55 87 | syl | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) = ( vol* ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 89 | mblss | ⊢ ( ( ◡ 𝐹 “ 𝑦 ) ∈ dom vol → ( ◡ 𝐹 “ 𝑦 ) ⊆ ℝ ) | |
| 90 | 55 89 | syl | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( ◡ 𝐹 “ 𝑦 ) ⊆ ℝ ) |
| 91 | mblvol | ⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) | |
| 92 | 51 91 | syl | ⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
| 93 | 41 50 4 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
| 94 | 92 93 | eqeltrrd | ⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
| 95 | 40 94 | fsumrecl | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → Σ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
| 96 | 36 | fveq2d | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( vol* ‘ ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ 𝑦 ) ) ) |
| 97 | mblss | ⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol → ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ℝ ) | |
| 98 | 51 97 | syl | ⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ℝ ) |
| 99 | 98 94 | jca | ⊢ ( ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) ∧ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ) → ( ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) ) |
| 100 | 99 | ralrimiva | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ∀ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) ) |
| 101 | ovolfiniun | ⊢ ( ( ( 𝑦 ∩ ran 𝐹 ) ∈ Fin ∧ ∀ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) ) → ( vol* ‘ ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) ) ≤ Σ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) | |
| 102 | 40 100 101 | syl2anc | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( vol* ‘ ∪ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( ◡ 𝐹 “ { 𝑥 } ) ) ≤ Σ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
| 103 | 96 102 | eqbrtrrd | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( vol* ‘ ( ◡ 𝐹 “ 𝑦 ) ) ≤ Σ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
| 104 | ovollecl | ⊢ ( ( ( ◡ 𝐹 “ 𝑦 ) ⊆ ℝ ∧ Σ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ∧ ( vol* ‘ ( ◡ 𝐹 “ 𝑦 ) ) ≤ Σ 𝑥 ∈ ( 𝑦 ∩ ran 𝐹 ) ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) → ( vol* ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ) | |
| 105 | 90 95 103 104 | syl3anc | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( vol* ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ) |
| 106 | 88 105 | eqeltrd | ⊢ ( ( 𝜑 ∧ ¬ 0 ∈ 𝑦 ) → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ) |
| 107 | 106 | ex | ⊢ ( 𝜑 → ( ¬ 0 ∈ 𝑦 → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ) ) |
| 108 | 107 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑦 ( ¬ 0 ∈ 𝑦 → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ) ) |
| 109 | neldifsn | ⊢ ¬ 0 ∈ ( ℝ ∖ { 0 } ) | |
| 110 | 61 | difexi | ⊢ ( ℝ ∖ { 0 } ) ∈ V |
| 111 | eleq2 | ⊢ ( 𝑦 = ( ℝ ∖ { 0 } ) → ( 0 ∈ 𝑦 ↔ 0 ∈ ( ℝ ∖ { 0 } ) ) ) | |
| 112 | 111 | notbid | ⊢ ( 𝑦 = ( ℝ ∖ { 0 } ) → ( ¬ 0 ∈ 𝑦 ↔ ¬ 0 ∈ ( ℝ ∖ { 0 } ) ) ) |
| 113 | imaeq2 | ⊢ ( 𝑦 = ( ℝ ∖ { 0 } ) → ( ◡ 𝐹 “ 𝑦 ) = ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) | |
| 114 | 113 | fveq2d | ⊢ ( 𝑦 = ( ℝ ∖ { 0 } ) → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) = ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ) |
| 115 | 114 | eleq1d | ⊢ ( 𝑦 = ( ℝ ∖ { 0 } ) → ( ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ↔ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) |
| 116 | 112 115 | imbi12d | ⊢ ( 𝑦 = ( ℝ ∖ { 0 } ) → ( ( ¬ 0 ∈ 𝑦 → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ) ↔ ( ¬ 0 ∈ ( ℝ ∖ { 0 } ) → ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) ) |
| 117 | 110 116 | spcv | ⊢ ( ∀ 𝑦 ( ¬ 0 ∈ 𝑦 → ( vol ‘ ( ◡ 𝐹 “ 𝑦 ) ) ∈ ℝ ) → ( ¬ 0 ∈ ( ℝ ∖ { 0 } ) → ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) |
| 118 | 108 109 117 | mpisyl | ⊢ ( 𝜑 → ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) |
| 119 | 1 2 118 | 3jca | ⊢ ( 𝜑 → ( 𝐹 : ℝ ⟶ ℝ ∧ ran 𝐹 ∈ Fin ∧ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) |
| 120 | isi1f | ⊢ ( 𝐹 ∈ dom ∫1 ↔ ( 𝐹 ∈ MblFn ∧ ( 𝐹 : ℝ ⟶ ℝ ∧ ran 𝐹 ∈ Fin ∧ ( vol ‘ ( ◡ 𝐹 “ ( ℝ ∖ { 0 } ) ) ) ∈ ℝ ) ) ) | |
| 121 | 86 119 120 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ∈ dom ∫1 ) |