This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A difference of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∖ 𝐵 ) ∈ dom vol ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indif2 | ⊢ ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) = ( ( 𝐴 ∩ ℝ ) ∖ 𝐵 ) | |
| 2 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 3 | dfss2 | ⊢ ( 𝐴 ⊆ ℝ ↔ ( 𝐴 ∩ ℝ ) = 𝐴 ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝐴 ∈ dom vol → ( 𝐴 ∩ ℝ ) = 𝐴 ) |
| 5 | 4 | difeq1d | ⊢ ( 𝐴 ∈ dom vol → ( ( 𝐴 ∩ ℝ ) ∖ 𝐵 ) = ( 𝐴 ∖ 𝐵 ) ) |
| 6 | 1 5 | eqtrid | ⊢ ( 𝐴 ∈ dom vol → ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) ) |
| 8 | cmmbl | ⊢ ( 𝐵 ∈ dom vol → ( ℝ ∖ 𝐵 ) ∈ dom vol ) | |
| 9 | inmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ ( ℝ ∖ 𝐵 ) ∈ dom vol ) → ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) ∈ dom vol ) | |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∩ ( ℝ ∖ 𝐵 ) ) ∈ dom vol ) |
| 11 | 7 10 | eqeltrrd | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ) → ( 𝐴 ∖ 𝐵 ) ∈ dom vol ) |