This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The floor function value is the greatest integer less than or equal to its argument. (Contributed by NM, 15-Nov-2004) (Proof shortened by Fan Zheng, 14-Jul-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flge | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ 𝐴 ↔ 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flltp1 | ⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) |
| 3 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℤ ) | |
| 4 | 3 | zred | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℝ ) |
| 5 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℝ ) | |
| 6 | 5 | flcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ∈ ℤ ) |
| 7 | 6 | peano2zd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℤ ) |
| 8 | 7 | zred | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 9 | lelttr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( ( ⌊ ‘ 𝐴 ) + 1 ) ∈ ℝ ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) | |
| 10 | 4 5 8 9 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 ≤ 𝐴 ∧ 𝐴 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 11 | 2 10 | mpan2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ 𝐴 → 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 12 | zleltp1 | ⊢ ( ( 𝐵 ∈ ℤ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℤ ) → ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ↔ 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) | |
| 13 | 3 6 12 | syl2anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ↔ 𝐵 < ( ( ⌊ ‘ 𝐴 ) + 1 ) ) ) |
| 14 | 11 13 | sylibrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ 𝐴 → 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ) ) |
| 15 | flle | ⊢ ( 𝐴 ∈ ℝ → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) |
| 17 | 6 | zred | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ⌊ ‘ 𝐴 ) ∈ ℝ ) |
| 18 | letr | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( ⌊ ‘ 𝐴 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) ) | |
| 19 | 4 17 5 18 | syl3anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ∧ ( ⌊ ‘ 𝐴 ) ≤ 𝐴 ) → 𝐵 ≤ 𝐴 ) ) |
| 20 | 16 19 | mpan2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ ( ⌊ ‘ 𝐴 ) → 𝐵 ≤ 𝐴 ) ) |
| 21 | 14 20 | impbid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ≤ 𝐴 ↔ 𝐵 ≤ ( ⌊ ‘ 𝐴 ) ) ) |