This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | ||
| abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | ||
| abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | ||
| abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | ||
| abelth.7 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) | ||
| abelthlem6.1 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑆 ∖ { 1 } ) ) | ||
| abelthlem7.2 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| abelthlem7.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | ||
| abelthlem7.4 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < 𝑅 ) | ||
| abelthlem7.5 | ⊢ ( 𝜑 → ( abs ‘ ( 1 − 𝑋 ) ) < ( 𝑅 / ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) ) | ||
| Assertion | abelthlem7 | ⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) < ( ( 𝑀 + 1 ) · 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 2 | abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | |
| 3 | abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 4 | abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | |
| 5 | abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | |
| 6 | abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | |
| 7 | abelth.7 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) | |
| 8 | abelthlem6.1 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑆 ∖ { 1 } ) ) | |
| 9 | abelthlem7.2 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 10 | abelthlem7.3 | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 11 | abelthlem7.4 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < 𝑅 ) | |
| 12 | abelthlem7.5 | ⊢ ( 𝜑 → ( abs ‘ ( 1 − 𝑋 ) ) < ( 𝑅 / ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) ) | |
| 13 | 1 2 3 4 5 6 | abelthlem4 | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ℂ ) |
| 14 | 8 | eldifad | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 15 | 13 14 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) ∈ ℂ ) |
| 16 | 15 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 17 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 18 | 1 2 3 4 5 6 7 8 | abelthlem7a | ⊢ ( 𝜑 → ( 𝑋 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑋 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |
| 19 | 18 | simpld | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) |
| 20 | subcl | ⊢ ( ( 1 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( 1 − 𝑋 ) ∈ ℂ ) | |
| 21 | 17 19 20 | sylancr | ⊢ ( 𝜑 → ( 1 − 𝑋 ) ∈ ℂ ) |
| 22 | fzfid | ⊢ ( 𝜑 → ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ) | |
| 23 | elfznn0 | ⊢ ( 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑛 ∈ ℕ0 ) | |
| 24 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 25 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 26 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑛 ) ∈ ℂ ) |
| 27 | 24 25 26 | serf | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ) |
| 28 | 27 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ∈ ℂ ) |
| 29 | expcl | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑛 ) ∈ ℂ ) | |
| 30 | 19 29 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑛 ) ∈ ℂ ) |
| 31 | 28 30 | mulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
| 32 | 23 31 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
| 33 | 22 32 | fsumcl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
| 34 | 21 33 | mulcld | ⊢ ( 𝜑 → ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 35 | 34 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ ℝ ) |
| 36 | eqid | ⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) | |
| 37 | 10 | nn0zd | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 38 | eluznn0 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ ℕ0 ) | |
| 39 | 10 38 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ ℕ0 ) |
| 40 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) | |
| 41 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ 𝑛 ) ) | |
| 42 | 40 41 | oveq12d | ⊢ ( 𝑘 = 𝑛 → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 43 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) | |
| 44 | ovex | ⊢ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ V | |
| 45 | 42 43 44 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 46 | 39 45 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 47 | 39 31 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
| 48 | 1 2 3 4 5 | abelthlem2 | ⊢ ( 𝜑 → ( 1 ∈ 𝑆 ∧ ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ) |
| 49 | 48 | simprd | ⊢ ( 𝜑 → ( 𝑆 ∖ { 1 } ) ⊆ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 50 | 49 8 | sseldd | ⊢ ( 𝜑 → 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) |
| 51 | 1 2 3 4 5 6 7 | abelthlem5 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 52 | 50 51 | mpdan | ⊢ ( 𝜑 → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 53 | 45 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 54 | 53 31 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 55 | 24 10 54 | iserex | ⊢ ( 𝜑 → ( seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ↔ seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) ) |
| 56 | 52 55 | mpbid | ⊢ ( 𝜑 → seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 57 | 36 37 46 47 56 | isumcl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ ) |
| 58 | 21 57 | mulcld | ⊢ ( 𝜑 → ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 59 | 58 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ∈ ℝ ) |
| 60 | 35 59 | readdcld | ⊢ ( 𝜑 → ( ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) + ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) ∈ ℝ ) |
| 61 | peano2re | ⊢ ( 𝑀 ∈ ℝ → ( 𝑀 + 1 ) ∈ ℝ ) | |
| 62 | 3 61 | syl | ⊢ ( 𝜑 → ( 𝑀 + 1 ) ∈ ℝ ) |
| 63 | 9 | rpred | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 64 | 62 63 | remulcld | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) · 𝑅 ) ∈ ℝ ) |
| 65 | 1 2 3 4 5 6 7 8 | abelthlem6 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 66 | 24 36 10 53 31 52 | isumsplit | ⊢ ( 𝜑 → Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) = ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) + Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 67 | 66 | oveq2d | ⊢ ( 𝜑 → ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ℕ0 ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = ( ( 1 − 𝑋 ) · ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) + Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 68 | 21 33 57 | adddid | ⊢ ( 𝜑 → ( ( 1 − 𝑋 ) · ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) + Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) = ( ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 69 | 65 67 68 | 3eqtrd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ( ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 70 | 69 | fveq2d | ⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) = ( abs ‘ ( ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) ) |
| 71 | 34 58 | abstrid | ⊢ ( 𝜑 → ( abs ‘ ( ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) + ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) ≤ ( ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) + ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) ) |
| 72 | 70 71 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) + ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) ) |
| 73 | 3 63 | remulcld | ⊢ ( 𝜑 → ( 𝑀 · 𝑅 ) ∈ ℝ ) |
| 74 | 21 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( 1 − 𝑋 ) ) ∈ ℝ ) |
| 75 | 28 | abscld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 76 | 23 75 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 77 | 22 76 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 78 | peano2re | ⊢ ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ → ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ∈ ℝ ) | |
| 79 | 77 78 | syl | ⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ∈ ℝ ) |
| 80 | 74 79 | remulcld | ⊢ ( 𝜑 → ( ( abs ‘ ( 1 − 𝑋 ) ) · ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) ∈ ℝ ) |
| 81 | 21 33 | absmuld | ⊢ ( 𝜑 → ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) = ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 82 | 33 | abscld | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 83 | 21 | absge0d | ⊢ ( 𝜑 → 0 ≤ ( abs ‘ ( 1 − 𝑋 ) ) ) |
| 84 | 31 | abscld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 85 | 23 84 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 86 | 22 85 | fsumrecl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 87 | 22 32 | fsumabs | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ≤ Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 88 | 19 | abscld | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 89 | reexpcl | ⊢ ( ( ( abs ‘ 𝑋 ) ∈ ℝ ∧ 𝑛 ∈ ℕ0 ) → ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ∈ ℝ ) | |
| 90 | 88 89 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ∈ ℝ ) |
| 91 | 1red | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 1 ∈ ℝ ) | |
| 92 | 28 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ) |
| 93 | 88 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 94 | 19 | absge0d | ⊢ ( 𝜑 → 0 ≤ ( abs ‘ 𝑋 ) ) |
| 95 | 94 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 0 ≤ ( abs ‘ 𝑋 ) ) |
| 96 | 0cn | ⊢ 0 ∈ ℂ | |
| 97 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 98 | 97 | cnmetdval | ⊢ ( ( 𝑋 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
| 99 | 19 96 98 | sylancl | ⊢ ( 𝜑 → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
| 100 | 19 | subid1d | ⊢ ( 𝜑 → ( 𝑋 − 0 ) = 𝑋 ) |
| 101 | 100 | fveq2d | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 − 0 ) ) = ( abs ‘ 𝑋 ) ) |
| 102 | 99 101 | eqtrd | ⊢ ( 𝜑 → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ 𝑋 ) ) |
| 103 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 104 | 1xr | ⊢ 1 ∈ ℝ* | |
| 105 | elbl3 | ⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 0 ∈ ℂ ∧ 𝑋 ∈ ℂ ) ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) | |
| 106 | 103 104 105 | mpanl12 | ⊢ ( ( 0 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
| 107 | 96 19 106 | sylancr | ⊢ ( 𝜑 → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
| 108 | 50 107 | mpbid | ⊢ ( 𝜑 → ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) |
| 109 | 102 108 | eqbrtrrd | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) < 1 ) |
| 110 | 1re | ⊢ 1 ∈ ℝ | |
| 111 | ltle | ⊢ ( ( ( abs ‘ 𝑋 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝑋 ) < 1 → ( abs ‘ 𝑋 ) ≤ 1 ) ) | |
| 112 | 88 110 111 | sylancl | ⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) < 1 → ( abs ‘ 𝑋 ) ≤ 1 ) ) |
| 113 | 109 112 | mpd | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ≤ 1 ) |
| 114 | 113 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( abs ‘ 𝑋 ) ≤ 1 ) |
| 115 | simpr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ℕ0 ) | |
| 116 | exple1 | ⊢ ( ( ( ( abs ‘ 𝑋 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑋 ) ∧ ( abs ‘ 𝑋 ) ≤ 1 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ≤ 1 ) | |
| 117 | 93 95 114 115 116 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ≤ 1 ) |
| 118 | 90 91 75 92 117 | lemul2ad | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ≤ ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) · 1 ) ) |
| 119 | 28 30 | absmuld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) · ( abs ‘ ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 120 | absexp | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑛 ∈ ℕ0 ) → ( abs ‘ ( 𝑋 ↑ 𝑛 ) ) = ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) | |
| 121 | 19 120 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( abs ‘ ( 𝑋 ↑ 𝑛 ) ) = ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) |
| 122 | 121 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) · ( abs ‘ ( 𝑋 ↑ 𝑛 ) ) ) = ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) |
| 123 | 119 122 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) = ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 124 | 75 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ∈ ℂ ) |
| 125 | 124 | mulridd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) · 1 ) = ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ) |
| 126 | 118 123 125 | 3brtr3d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ≤ ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ) |
| 127 | 23 126 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ≤ ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ) |
| 128 | 22 85 76 127 | fsumle | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ≤ Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ) |
| 129 | 82 86 77 87 128 | letrd | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ≤ Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ) |
| 130 | 77 | ltp1d | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) < ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) |
| 131 | 82 77 79 129 130 | lelttrd | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) < ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) |
| 132 | 82 79 131 | ltled | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ≤ ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) |
| 133 | 82 79 74 83 132 | lemul2ad | ⊢ ( 𝜑 → ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ≤ ( ( abs ‘ ( 1 − 𝑋 ) ) · ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) ) |
| 134 | 81 133 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ≤ ( ( abs ‘ ( 1 − 𝑋 ) ) · ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) ) |
| 135 | 0red | ⊢ ( 𝜑 → 0 ∈ ℝ ) | |
| 136 | 23 92 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 0 ≤ ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ) |
| 137 | 22 76 136 | fsumge0 | ⊢ ( 𝜑 → 0 ≤ Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ) |
| 138 | 135 77 79 137 130 | lelttrd | ⊢ ( 𝜑 → 0 < ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) |
| 139 | ltmuldiv | ⊢ ( ( ( abs ‘ ( 1 − 𝑋 ) ) ∈ ℝ ∧ 𝑅 ∈ ℝ ∧ ( ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ∈ ℝ ∧ 0 < ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) ) → ( ( ( abs ‘ ( 1 − 𝑋 ) ) · ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) < 𝑅 ↔ ( abs ‘ ( 1 − 𝑋 ) ) < ( 𝑅 / ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) ) ) | |
| 140 | 74 63 79 138 139 | syl112anc | ⊢ ( 𝜑 → ( ( ( abs ‘ ( 1 − 𝑋 ) ) · ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) < 𝑅 ↔ ( abs ‘ ( 1 − 𝑋 ) ) < ( 𝑅 / ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) ) ) |
| 141 | 12 140 | mpbird | ⊢ ( 𝜑 → ( ( abs ‘ ( 1 − 𝑋 ) ) · ( Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) + 1 ) ) < 𝑅 ) |
| 142 | 35 80 63 134 141 | lelttrd | ⊢ ( 𝜑 → ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) < 𝑅 ) |
| 143 | 21 57 | absmuld | ⊢ ( 𝜑 → ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) = ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 144 | 57 | abscld | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 145 | 42 | fveq2d | ⊢ ( 𝑘 = 𝑛 → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 146 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) | |
| 147 | fvex | ⊢ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ V | |
| 148 | 145 146 147 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) = ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 149 | 39 148 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) = ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 150 | 47 | abscld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 151 | uzid | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
| 152 | 37 151 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
| 153 | oveq2 | ⊢ ( 𝑘 = 𝑛 → ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) = ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) | |
| 154 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) | |
| 155 | ovex | ⊢ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ∈ V | |
| 156 | 153 154 155 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ‘ 𝑛 ) = ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) |
| 157 | 39 156 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ‘ 𝑛 ) = ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) |
| 158 | 39 90 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ∈ ℝ ) |
| 159 | 157 158 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ‘ 𝑛 ) ∈ ℝ ) |
| 160 | 150 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ ℂ ) |
| 161 | 149 160 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 162 | 88 | recnd | ⊢ ( 𝜑 → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 163 | absidm | ⊢ ( 𝑋 ∈ ℂ → ( abs ‘ ( abs ‘ 𝑋 ) ) = ( abs ‘ 𝑋 ) ) | |
| 164 | 19 163 | syl | ⊢ ( 𝜑 → ( abs ‘ ( abs ‘ 𝑋 ) ) = ( abs ‘ 𝑋 ) ) |
| 165 | 164 109 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ ( abs ‘ 𝑋 ) ) < 1 ) |
| 166 | 162 165 10 157 | geolim2 | ⊢ ( 𝜑 → seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ⇝ ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) / ( 1 − ( abs ‘ 𝑋 ) ) ) ) |
| 167 | seqex | ⊢ seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ∈ V | |
| 168 | ovex | ⊢ ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) / ( 1 − ( abs ‘ 𝑋 ) ) ) ∈ V | |
| 169 | 167 168 | breldm | ⊢ ( seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ⇝ ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) / ( 1 − ( abs ‘ 𝑋 ) ) ) → seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ∈ dom ⇝ ) |
| 170 | 166 169 | syl | ⊢ ( 𝜑 → seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ∈ dom ⇝ ) |
| 171 | 119 122 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) |
| 172 | 39 171 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) = ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) |
| 173 | 39 75 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ∈ ℝ ) |
| 174 | 63 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑅 ∈ ℝ ) |
| 175 | 88 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 176 | 94 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ ( abs ‘ 𝑋 ) ) |
| 177 | 175 39 176 | expge0d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 0 ≤ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) |
| 178 | 40 | fveq2d | ⊢ ( 𝑘 = 𝑛 → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) = ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ) |
| 179 | 178 | breq1d | ⊢ ( 𝑘 = 𝑛 → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < 𝑅 ↔ ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) < 𝑅 ) ) |
| 180 | 179 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) ) < 𝑅 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) < 𝑅 ) |
| 181 | 11 180 | sylan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) < 𝑅 ) |
| 182 | 173 174 181 | ltled | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) ≤ 𝑅 ) |
| 183 | 173 174 158 177 182 | lemul1ad | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ≤ ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) |
| 184 | 172 183 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ≤ ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) |
| 185 | 149 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) ) = ( abs ‘ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) |
| 186 | absidm | ⊢ ( ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ∈ ℂ → ( abs ‘ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) = ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) | |
| 187 | 47 186 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) = ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 188 | 185 187 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) ) = ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 189 | 157 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑅 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ‘ 𝑛 ) ) = ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) |
| 190 | 184 188 189 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) ) ≤ ( 𝑅 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ‘ 𝑛 ) ) ) |
| 191 | 36 152 159 161 170 63 190 | cvgcmpce | ⊢ ( 𝜑 → seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) ∈ dom ⇝ ) |
| 192 | 36 37 149 150 191 | isumrecl | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ∈ ℝ ) |
| 193 | eldifsni | ⊢ ( 𝑋 ∈ ( 𝑆 ∖ { 1 } ) → 𝑋 ≠ 1 ) | |
| 194 | 8 193 | syl | ⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
| 195 | 194 | necomd | ⊢ ( 𝜑 → 1 ≠ 𝑋 ) |
| 196 | subeq0 | ⊢ ( ( 1 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( ( 1 − 𝑋 ) = 0 ↔ 1 = 𝑋 ) ) | |
| 197 | 196 | necon3bid | ⊢ ( ( 1 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( ( 1 − 𝑋 ) ≠ 0 ↔ 1 ≠ 𝑋 ) ) |
| 198 | 17 19 197 | sylancr | ⊢ ( 𝜑 → ( ( 1 − 𝑋 ) ≠ 0 ↔ 1 ≠ 𝑋 ) ) |
| 199 | 195 198 | mpbird | ⊢ ( 𝜑 → ( 1 − 𝑋 ) ≠ 0 ) |
| 200 | 21 199 | absrpcld | ⊢ ( 𝜑 → ( abs ‘ ( 1 − 𝑋 ) ) ∈ ℝ+ ) |
| 201 | 73 200 | rerpdivcld | ⊢ ( 𝜑 → ( ( 𝑀 · 𝑅 ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ∈ ℝ ) |
| 202 | 36 37 46 47 56 | isumclim2 | ⊢ ( 𝜑 → seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ⇝ Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) |
| 203 | 36 37 149 160 191 | isumclim2 | ⊢ ( 𝜑 → seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ) ⇝ Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 204 | 39 54 | syldan | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 205 | 46 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( abs ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) = ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 206 | 149 205 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ‘ 𝑛 ) = ( abs ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑛 ) ) ) |
| 207 | 36 202 203 37 204 206 | iserabs | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ≤ Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) |
| 208 | 88 10 | reexpcld | ⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) ∈ ℝ ) |
| 209 | difrp | ⊢ ( ( ( abs ‘ 𝑋 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝑋 ) < 1 ↔ ( 1 − ( abs ‘ 𝑋 ) ) ∈ ℝ+ ) ) | |
| 210 | 88 110 209 | sylancl | ⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) < 1 ↔ ( 1 − ( abs ‘ 𝑋 ) ) ∈ ℝ+ ) ) |
| 211 | 109 210 | mpbid | ⊢ ( 𝜑 → ( 1 − ( abs ‘ 𝑋 ) ) ∈ ℝ+ ) |
| 212 | 208 211 | rerpdivcld | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) / ( 1 − ( abs ‘ 𝑋 ) ) ) ∈ ℝ ) |
| 213 | 63 212 | remulcld | ⊢ ( 𝜑 → ( 𝑅 · ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) / ( 1 − ( abs ‘ 𝑋 ) ) ) ) ∈ ℝ ) |
| 214 | 153 | oveq2d | ⊢ ( 𝑘 = 𝑛 → ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) = ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) |
| 215 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) | |
| 216 | ovex | ⊢ ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ∈ V | |
| 217 | 214 215 216 | fvmpt | ⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) |
| 218 | 39 217 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) |
| 219 | 174 158 | remulcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ∈ ℝ ) |
| 220 | 9 | rpcnd | ⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 221 | 159 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ‘ 𝑛 ) ∈ ℂ ) |
| 222 | 218 189 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ‘ 𝑛 ) = ( 𝑅 · ( ( 𝑘 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ‘ 𝑛 ) ) ) |
| 223 | 36 37 220 166 221 222 | isermulc2 | ⊢ ( 𝜑 → seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ) ⇝ ( 𝑅 · ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) / ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |
| 224 | seqex | ⊢ seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ) ∈ V | |
| 225 | ovex | ⊢ ( 𝑅 · ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) / ( 1 − ( abs ‘ 𝑋 ) ) ) ) ∈ V | |
| 226 | 224 225 | breldm | ⊢ ( seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ) ⇝ ( 𝑅 · ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) / ( 1 − ( abs ‘ 𝑋 ) ) ) ) → seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 227 | 223 226 | syl | ⊢ ( 𝜑 → seq 𝑁 ( + , ( 𝑘 ∈ ℕ0 ↦ ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 228 | 36 37 149 150 218 219 184 191 227 | isumle | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ≤ Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) |
| 229 | 219 | recnd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ∈ ℂ ) |
| 230 | 36 37 218 229 223 | isumclim | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( 𝑅 · ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) = ( 𝑅 · ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) / ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |
| 231 | 228 230 | breqtrd | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ≤ ( 𝑅 · ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) / ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |
| 232 | 9 211 | rpdivcld | ⊢ ( 𝜑 → ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ∈ ℝ+ ) |
| 233 | 232 | rpred | ⊢ ( 𝜑 → ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ∈ ℝ ) |
| 234 | 208 | recnd | ⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) ∈ ℂ ) |
| 235 | 211 | rpcnd | ⊢ ( 𝜑 → ( 1 − ( abs ‘ 𝑋 ) ) ∈ ℂ ) |
| 236 | 211 | rpne0d | ⊢ ( 𝜑 → ( 1 − ( abs ‘ 𝑋 ) ) ≠ 0 ) |
| 237 | 220 234 235 236 | div12d | ⊢ ( 𝜑 → ( 𝑅 · ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) / ( 1 − ( abs ‘ 𝑋 ) ) ) ) = ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) · ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |
| 238 | 1red | ⊢ ( 𝜑 → 1 ∈ ℝ ) | |
| 239 | 232 | rpge0d | ⊢ ( 𝜑 → 0 ≤ ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ) |
| 240 | exple1 | ⊢ ( ( ( ( abs ‘ 𝑋 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝑋 ) ∧ ( abs ‘ 𝑋 ) ≤ 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) ≤ 1 ) | |
| 241 | 88 94 113 10 240 | syl31anc | ⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) ≤ 1 ) |
| 242 | 208 238 233 239 241 | lemul1ad | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) · ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ) ≤ ( 1 · ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |
| 243 | 232 | rpcnd | ⊢ ( 𝜑 → ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ∈ ℂ ) |
| 244 | 243 | mullidd | ⊢ ( 𝜑 → ( 1 · ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ) = ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ) |
| 245 | 242 244 | breqtrd | ⊢ ( 𝜑 → ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) · ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ) ≤ ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ) |
| 246 | 237 245 | eqbrtrd | ⊢ ( 𝜑 → ( 𝑅 · ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) / ( 1 − ( abs ‘ 𝑋 ) ) ) ) ≤ ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ) |
| 247 | 18 | simprd | ⊢ ( 𝜑 → ( abs ‘ ( 1 − 𝑋 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) |
| 248 | resubcl | ⊢ ( ( 1 ∈ ℝ ∧ ( abs ‘ 𝑋 ) ∈ ℝ ) → ( 1 − ( abs ‘ 𝑋 ) ) ∈ ℝ ) | |
| 249 | 110 88 248 | sylancr | ⊢ ( 𝜑 → ( 1 − ( abs ‘ 𝑋 ) ) ∈ ℝ ) |
| 250 | 3 249 | remulcld | ⊢ ( 𝜑 → ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ∈ ℝ ) |
| 251 | 74 250 9 | lemul2d | ⊢ ( 𝜑 → ( ( abs ‘ ( 1 − 𝑋 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ↔ ( 𝑅 · ( abs ‘ ( 1 − 𝑋 ) ) ) ≤ ( 𝑅 · ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) ) |
| 252 | 247 251 | mpbid | ⊢ ( 𝜑 → ( 𝑅 · ( abs ‘ ( 1 − 𝑋 ) ) ) ≤ ( 𝑅 · ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |
| 253 | 3 | recnd | ⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 254 | 220 253 235 | mul12d | ⊢ ( 𝜑 → ( 𝑅 · ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) = ( 𝑀 · ( 𝑅 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |
| 255 | 220 235 | mulcomd | ⊢ ( 𝜑 → ( 𝑅 · ( 1 − ( abs ‘ 𝑋 ) ) ) = ( ( 1 − ( abs ‘ 𝑋 ) ) · 𝑅 ) ) |
| 256 | 255 | oveq2d | ⊢ ( 𝜑 → ( 𝑀 · ( 𝑅 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) = ( 𝑀 · ( ( 1 − ( abs ‘ 𝑋 ) ) · 𝑅 ) ) ) |
| 257 | 253 235 220 | mul12d | ⊢ ( 𝜑 → ( 𝑀 · ( ( 1 − ( abs ‘ 𝑋 ) ) · 𝑅 ) ) = ( ( 1 − ( abs ‘ 𝑋 ) ) · ( 𝑀 · 𝑅 ) ) ) |
| 258 | 254 256 257 | 3eqtrd | ⊢ ( 𝜑 → ( 𝑅 · ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) = ( ( 1 − ( abs ‘ 𝑋 ) ) · ( 𝑀 · 𝑅 ) ) ) |
| 259 | 252 258 | breqtrd | ⊢ ( 𝜑 → ( 𝑅 · ( abs ‘ ( 1 − 𝑋 ) ) ) ≤ ( ( 1 − ( abs ‘ 𝑋 ) ) · ( 𝑀 · 𝑅 ) ) ) |
| 260 | 249 73 | remulcld | ⊢ ( 𝜑 → ( ( 1 − ( abs ‘ 𝑋 ) ) · ( 𝑀 · 𝑅 ) ) ∈ ℝ ) |
| 261 | 63 260 200 | lemuldivd | ⊢ ( 𝜑 → ( ( 𝑅 · ( abs ‘ ( 1 − 𝑋 ) ) ) ≤ ( ( 1 − ( abs ‘ 𝑋 ) ) · ( 𝑀 · 𝑅 ) ) ↔ 𝑅 ≤ ( ( ( 1 − ( abs ‘ 𝑋 ) ) · ( 𝑀 · 𝑅 ) ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ) ) |
| 262 | 259 261 | mpbid | ⊢ ( 𝜑 → 𝑅 ≤ ( ( ( 1 − ( abs ‘ 𝑋 ) ) · ( 𝑀 · 𝑅 ) ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ) |
| 263 | 73 | recnd | ⊢ ( 𝜑 → ( 𝑀 · 𝑅 ) ∈ ℂ ) |
| 264 | 74 | recnd | ⊢ ( 𝜑 → ( abs ‘ ( 1 − 𝑋 ) ) ∈ ℂ ) |
| 265 | 200 | rpne0d | ⊢ ( 𝜑 → ( abs ‘ ( 1 − 𝑋 ) ) ≠ 0 ) |
| 266 | 235 263 264 265 | divassd | ⊢ ( 𝜑 → ( ( ( 1 − ( abs ‘ 𝑋 ) ) · ( 𝑀 · 𝑅 ) ) / ( abs ‘ ( 1 − 𝑋 ) ) ) = ( ( 1 − ( abs ‘ 𝑋 ) ) · ( ( 𝑀 · 𝑅 ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ) ) |
| 267 | 262 266 | breqtrd | ⊢ ( 𝜑 → 𝑅 ≤ ( ( 1 − ( abs ‘ 𝑋 ) ) · ( ( 𝑀 · 𝑅 ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ) ) |
| 268 | posdif | ⊢ ( ( ( abs ‘ 𝑋 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝑋 ) < 1 ↔ 0 < ( 1 − ( abs ‘ 𝑋 ) ) ) ) | |
| 269 | 88 110 268 | sylancl | ⊢ ( 𝜑 → ( ( abs ‘ 𝑋 ) < 1 ↔ 0 < ( 1 − ( abs ‘ 𝑋 ) ) ) ) |
| 270 | 109 269 | mpbid | ⊢ ( 𝜑 → 0 < ( 1 − ( abs ‘ 𝑋 ) ) ) |
| 271 | ledivmul | ⊢ ( ( 𝑅 ∈ ℝ ∧ ( ( 𝑀 · 𝑅 ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ∈ ℝ ∧ ( ( 1 − ( abs ‘ 𝑋 ) ) ∈ ℝ ∧ 0 < ( 1 − ( abs ‘ 𝑋 ) ) ) ) → ( ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ≤ ( ( 𝑀 · 𝑅 ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ↔ 𝑅 ≤ ( ( 1 − ( abs ‘ 𝑋 ) ) · ( ( 𝑀 · 𝑅 ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ) ) ) | |
| 272 | 63 201 249 270 271 | syl112anc | ⊢ ( 𝜑 → ( ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ≤ ( ( 𝑀 · 𝑅 ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ↔ 𝑅 ≤ ( ( 1 − ( abs ‘ 𝑋 ) ) · ( ( 𝑀 · 𝑅 ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ) ) ) |
| 273 | 267 272 | mpbird | ⊢ ( 𝜑 → ( 𝑅 / ( 1 − ( abs ‘ 𝑋 ) ) ) ≤ ( ( 𝑀 · 𝑅 ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ) |
| 274 | 213 233 201 246 273 | letrd | ⊢ ( 𝜑 → ( 𝑅 · ( ( ( abs ‘ 𝑋 ) ↑ 𝑁 ) / ( 1 − ( abs ‘ 𝑋 ) ) ) ) ≤ ( ( 𝑀 · 𝑅 ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ) |
| 275 | 192 213 201 231 274 | letrd | ⊢ ( 𝜑 → Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ≤ ( ( 𝑀 · 𝑅 ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ) |
| 276 | 144 192 201 207 275 | letrd | ⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ≤ ( ( 𝑀 · 𝑅 ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ) |
| 277 | 144 73 200 | lemuldiv2d | ⊢ ( 𝜑 → ( ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ≤ ( 𝑀 · 𝑅 ) ↔ ( abs ‘ Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ≤ ( ( 𝑀 · 𝑅 ) / ( abs ‘ ( 1 − 𝑋 ) ) ) ) ) |
| 278 | 276 277 | mpbird | ⊢ ( 𝜑 → ( ( abs ‘ ( 1 − 𝑋 ) ) · ( abs ‘ Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ≤ ( 𝑀 · 𝑅 ) ) |
| 279 | 143 278 | eqbrtrd | ⊢ ( 𝜑 → ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ≤ ( 𝑀 · 𝑅 ) ) |
| 280 | 35 59 63 73 142 279 | ltleaddd | ⊢ ( 𝜑 → ( ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) + ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) < ( 𝑅 + ( 𝑀 · 𝑅 ) ) ) |
| 281 | 1cnd | ⊢ ( 𝜑 → 1 ∈ ℂ ) | |
| 282 | 253 281 220 | adddird | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) · 𝑅 ) = ( ( 𝑀 · 𝑅 ) + ( 1 · 𝑅 ) ) ) |
| 283 | 220 | mullidd | ⊢ ( 𝜑 → ( 1 · 𝑅 ) = 𝑅 ) |
| 284 | 283 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑀 · 𝑅 ) + ( 1 · 𝑅 ) ) = ( ( 𝑀 · 𝑅 ) + 𝑅 ) ) |
| 285 | 263 220 | addcomd | ⊢ ( 𝜑 → ( ( 𝑀 · 𝑅 ) + 𝑅 ) = ( 𝑅 + ( 𝑀 · 𝑅 ) ) ) |
| 286 | 282 284 285 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝑀 + 1 ) · 𝑅 ) = ( 𝑅 + ( 𝑀 · 𝑅 ) ) ) |
| 287 | 280 286 | breqtrrd | ⊢ ( 𝜑 → ( ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) + ( abs ‘ ( ( 1 − 𝑋 ) · Σ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ( ( seq 0 ( + , 𝐴 ) ‘ 𝑛 ) · ( 𝑋 ↑ 𝑛 ) ) ) ) ) < ( ( 𝑀 + 1 ) · 𝑅 ) ) |
| 288 | 16 60 64 72 287 | lelttrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝐹 ‘ 𝑋 ) ) < ( ( 𝑀 + 1 ) · 𝑅 ) ) |