This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltp1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| divgt0d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| lemul1ad.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| lemul1ad.4 | ⊢ ( 𝜑 → 0 ≤ 𝐶 ) | ||
| lemul1ad.5 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | ||
| Assertion | lemul2ad | ⊢ ( 𝜑 → ( 𝐶 · 𝐴 ) ≤ ( 𝐶 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | divgt0d.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | lemul1ad.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | lemul1ad.4 | ⊢ ( 𝜑 → 0 ≤ 𝐶 ) | |
| 5 | lemul1ad.5 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) | |
| 6 | 3 4 | jca | ⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
| 7 | lemul2a | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ 𝐴 ≤ 𝐵 ) → ( 𝐶 · 𝐴 ) ≤ ( 𝐶 · 𝐵 ) ) | |
| 8 | 1 2 6 5 7 | syl31anc | ⊢ ( 𝜑 → ( 𝐶 · 𝐴 ) ≤ ( 𝐶 · 𝐵 ) ) |