This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of two infinite sums. (Contributed by Paul Chapman, 13-Nov-2007) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumle.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumle.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| isumle.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| isumle.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) | ||
| isumle.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) | ||
| isumle.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | ||
| isumle.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ≤ 𝐵 ) | ||
| isumle.8 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| isumle.9 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) | ||
| Assertion | isumle | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ≤ Σ 𝑘 ∈ 𝑍 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumle.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumle.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | isumle.3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 4 | isumle.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) | |
| 5 | isumle.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = 𝐵 ) | |
| 6 | isumle.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℝ ) | |
| 7 | isumle.7 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ≤ 𝐵 ) | |
| 8 | isumle.8 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 9 | isumle.9 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ) | |
| 10 | climdm | ⊢ ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) | |
| 11 | 8 10 | sylib | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| 12 | climdm | ⊢ ( seq 𝑀 ( + , 𝐺 ) ∈ dom ⇝ ↔ seq 𝑀 ( + , 𝐺 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐺 ) ) ) | |
| 13 | 9 12 | sylib | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐺 ) ⇝ ( ⇝ ‘ seq 𝑀 ( + , 𝐺 ) ) ) |
| 14 | 3 4 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) |
| 15 | 5 6 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) ∈ ℝ ) |
| 16 | 7 3 5 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ≤ ( 𝐺 ‘ 𝑘 ) ) |
| 17 | 1 2 11 13 14 15 16 | iserle | ⊢ ( 𝜑 → ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ≤ ( ⇝ ‘ seq 𝑀 ( + , 𝐺 ) ) ) |
| 18 | 4 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 19 | 1 2 3 18 | isum | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( ⇝ ‘ seq 𝑀 ( + , 𝐹 ) ) ) |
| 20 | 6 | recnd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 21 | 1 2 5 20 | isum | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐵 = ( ⇝ ‘ seq 𝑀 ( + , 𝐺 ) ) ) |
| 22 | 17 19 21 | 3brtr4d | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 ≤ Σ 𝑘 ∈ 𝑍 𝐵 ) |