This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 8-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | ||
| abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | ||
| abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | ||
| abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | ||
| abelth.7 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) | ||
| abelthlem6.1 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑆 ∖ { 1 } ) ) | ||
| Assertion | abelthlem7a | ⊢ ( 𝜑 → ( 𝑋 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑋 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 2 | abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | |
| 3 | abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 4 | abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | |
| 5 | abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | |
| 6 | abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | |
| 7 | abelth.7 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) | |
| 8 | abelthlem6.1 | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑆 ∖ { 1 } ) ) | |
| 9 | 8 | eldifad | ⊢ ( 𝜑 → 𝑋 ∈ 𝑆 ) |
| 10 | oveq2 | ⊢ ( 𝑧 = 𝑋 → ( 1 − 𝑧 ) = ( 1 − 𝑋 ) ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝑧 = 𝑋 → ( abs ‘ ( 1 − 𝑧 ) ) = ( abs ‘ ( 1 − 𝑋 ) ) ) |
| 12 | fveq2 | ⊢ ( 𝑧 = 𝑋 → ( abs ‘ 𝑧 ) = ( abs ‘ 𝑋 ) ) | |
| 13 | 12 | oveq2d | ⊢ ( 𝑧 = 𝑋 → ( 1 − ( abs ‘ 𝑧 ) ) = ( 1 − ( abs ‘ 𝑋 ) ) ) |
| 14 | 13 | oveq2d | ⊢ ( 𝑧 = 𝑋 → ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) = ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) |
| 15 | 11 14 | breq12d | ⊢ ( 𝑧 = 𝑋 → ( ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) ↔ ( abs ‘ ( 1 − 𝑋 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |
| 16 | 15 5 | elrab2 | ⊢ ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑋 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |
| 17 | 9 16 | sylib | ⊢ ( 𝜑 → ( 𝑋 ∈ ℂ ∧ ( abs ‘ ( 1 − 𝑋 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑋 ) ) ) ) ) |