This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split off the first N terms of an infinite sum. (Contributed by Paul Chapman, 9-Feb-2008) (Revised by Mario Carneiro, 24-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isumsplit.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| isumsplit.2 | ⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) | ||
| isumsplit.3 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | ||
| isumsplit.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | ||
| isumsplit.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | ||
| isumsplit.6 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | ||
| Assertion | isumsplit | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + Σ 𝑘 ∈ 𝑊 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isumsplit.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | isumsplit.2 | ⊢ 𝑊 = ( ℤ≥ ‘ 𝑁 ) | |
| 3 | isumsplit.3 | ⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) | |
| 4 | isumsplit.4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) | |
| 5 | isumsplit.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) | |
| 6 | isumsplit.6 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ) | |
| 7 | 3 1 | eleqtrdi | ⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 8 | eluzel2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 10 | eluzelz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) | |
| 11 | 7 10 | syl | ⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 12 | uzss | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) | |
| 13 | 7 12 | syl | ⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 14 | 13 2 1 | 3sstr4g | ⊢ ( 𝜑 → 𝑊 ⊆ 𝑍 ) |
| 15 | 14 | sselda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝑘 ∈ 𝑍 ) |
| 16 | 15 4 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 17 | 15 5 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → 𝐴 ∈ ℂ ) |
| 18 | 4 5 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 19 | 1 3 18 | iserex | ⊢ ( 𝜑 → ( seq 𝑀 ( + , 𝐹 ) ∈ dom ⇝ ↔ seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) ) |
| 20 | 6 19 | mpbid | ⊢ ( 𝜑 → seq 𝑁 ( + , 𝐹 ) ∈ dom ⇝ ) |
| 21 | 2 11 16 17 20 | isumclim2 | ⊢ ( 𝜑 → seq 𝑁 ( + , 𝐹 ) ⇝ Σ 𝑘 ∈ 𝑊 𝐴 ) |
| 22 | fzfid | ⊢ ( 𝜑 → ( 𝑀 ... ( 𝑁 − 1 ) ) ∈ Fin ) | |
| 23 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 24 | 23 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ 𝑍 ) |
| 25 | 24 5 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 26 | 22 25 | fsumcl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 ∈ ℂ ) |
| 27 | 15 18 | syldan | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑊 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 28 | 2 11 27 | serf | ⊢ ( 𝜑 → seq 𝑁 ( + , 𝐹 ) : 𝑊 ⟶ ℂ ) |
| 29 | 28 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 30 | 9 | zred | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 31 | 30 | ltm1d | ⊢ ( 𝜑 → ( 𝑀 − 1 ) < 𝑀 ) |
| 32 | peano2zm | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 − 1 ) ∈ ℤ ) | |
| 33 | fzn | ⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑀 − 1 ) ∈ ℤ ) → ( ( 𝑀 − 1 ) < 𝑀 ↔ ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) ) | |
| 34 | 9 32 33 | syl2anc2 | ⊢ ( 𝜑 → ( ( 𝑀 − 1 ) < 𝑀 ↔ ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) ) |
| 35 | 31 34 | mpbid | ⊢ ( 𝜑 → ( 𝑀 ... ( 𝑀 − 1 ) ) = ∅ ) |
| 36 | 35 | sumeq1d | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 = Σ 𝑘 ∈ ∅ 𝐴 ) |
| 37 | 36 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 = Σ 𝑘 ∈ ∅ 𝐴 ) |
| 38 | sum0 | ⊢ Σ 𝑘 ∈ ∅ 𝐴 = 0 | |
| 39 | 37 38 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 = 0 ) |
| 40 | 39 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 + ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) = ( 0 + ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
| 41 | 14 | sselda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → 𝑗 ∈ 𝑍 ) |
| 42 | 1 9 18 | serf | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) : 𝑍 ⟶ ℂ ) |
| 43 | 42 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 44 | 41 43 | syldan | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ∈ ℂ ) |
| 45 | 44 | addlidd | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( 0 + ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) |
| 46 | 40 45 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 + ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
| 47 | oveq1 | ⊢ ( 𝑁 = 𝑀 → ( 𝑁 − 1 ) = ( 𝑀 − 1 ) ) | |
| 48 | 47 | oveq2d | ⊢ ( 𝑁 = 𝑀 → ( 𝑀 ... ( 𝑁 − 1 ) ) = ( 𝑀 ... ( 𝑀 − 1 ) ) ) |
| 49 | 48 | sumeq1d | ⊢ ( 𝑁 = 𝑀 → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 = Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 ) |
| 50 | seqeq1 | ⊢ ( 𝑁 = 𝑀 → seq 𝑁 ( + , 𝐹 ) = seq 𝑀 ( + , 𝐹 ) ) | |
| 51 | 50 | fveq1d | ⊢ ( 𝑁 = 𝑀 → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) = ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) |
| 52 | 49 51 | oveq12d | ⊢ ( 𝑁 = 𝑀 → ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 + ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
| 53 | 52 | eqeq2d | ⊢ ( 𝑁 = 𝑀 → ( ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ) ↔ ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑀 − 1 ) ) 𝐴 + ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ) |
| 54 | 46 53 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( 𝑁 = 𝑀 → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ) |
| 55 | addcl | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ) → ( 𝑘 + 𝑚 ) ∈ ℂ ) | |
| 56 | 55 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ) ) → ( 𝑘 + 𝑚 ) ∈ ℂ ) |
| 57 | addass | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( ( 𝑘 + 𝑚 ) + 𝑥 ) = ( 𝑘 + ( 𝑚 + 𝑥 ) ) ) | |
| 58 | 57 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ ( 𝑘 ∈ ℂ ∧ 𝑚 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( 𝑘 + 𝑚 ) + 𝑥 ) = ( 𝑘 + ( 𝑚 + 𝑥 ) ) ) |
| 59 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑗 ∈ 𝑊 ) | |
| 60 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝜑 ) | |
| 61 | 11 | zcnd | ⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 62 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 63 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 64 | 61 62 63 | sylancl | ⊢ ( 𝜑 → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 65 | 64 | eqcomd | ⊢ ( 𝜑 → 𝑁 = ( ( 𝑁 − 1 ) + 1 ) ) |
| 66 | 60 65 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑁 = ( ( 𝑁 − 1 ) + 1 ) ) |
| 67 | 66 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 68 | 2 67 | eqtrid | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑊 = ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 69 | 59 68 | eleqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ ( ( 𝑁 − 1 ) + 1 ) ) ) |
| 70 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → 𝑀 ∈ ℤ ) |
| 71 | eluzp1m1 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 72 | 70 71 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 73 | elfzuz | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 74 | 73 1 | eleqtrrdi | ⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑗 ) → 𝑘 ∈ 𝑍 ) |
| 75 | 60 74 18 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 76 | 56 58 69 72 75 | seqsplit | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) + ( seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
| 77 | 60 24 4 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → ( 𝐹 ‘ 𝑘 ) = 𝐴 ) |
| 78 | 60 24 5 | syl2an | ⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
| 79 | 77 72 78 | fsumser | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 = ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) ) |
| 80 | 66 | seqeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → seq 𝑁 ( + , 𝐹 ) = seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ) |
| 81 | 80 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) = ( seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) |
| 82 | 79 81 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ) = ( ( seq 𝑀 ( + , 𝐹 ) ‘ ( 𝑁 − 1 ) ) + ( seq ( ( 𝑁 − 1 ) + 1 ) ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
| 83 | 76 82 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
| 84 | 83 | ex | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ) ) ) |
| 85 | uzp1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) | |
| 86 | 7 85 | syl | ⊢ ( 𝜑 → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 87 | 86 | adantr | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
| 88 | 54 84 87 | mpjaod | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑊 ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑗 ) = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + ( seq 𝑁 ( + , 𝐹 ) ‘ 𝑗 ) ) ) |
| 89 | 2 11 21 26 6 29 88 | climaddc2 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) ⇝ ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + Σ 𝑘 ∈ 𝑊 𝐴 ) ) |
| 90 | 1 9 4 5 89 | isumclim | ⊢ ( 𝜑 → Σ 𝑘 ∈ 𝑍 𝐴 = ( Σ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 + Σ 𝑘 ∈ 𝑊 𝐴 ) ) |