This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | ||
| abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | ||
| abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | ||
| abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | ||
| abelth.7 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) | ||
| Assertion | abelthlem5 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | ⊢ ( 𝜑 → 𝐴 : ℕ0 ⟶ ℂ ) | |
| 2 | abelth.2 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ∈ dom ⇝ ) | |
| 3 | abelth.3 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 4 | abelth.4 | ⊢ ( 𝜑 → 0 ≤ 𝑀 ) | |
| 5 | abelth.5 | ⊢ 𝑆 = { 𝑧 ∈ ℂ ∣ ( abs ‘ ( 1 − 𝑧 ) ) ≤ ( 𝑀 · ( 1 − ( abs ‘ 𝑧 ) ) ) } | |
| 6 | abelth.6 | ⊢ 𝐹 = ( 𝑥 ∈ 𝑆 ↦ Σ 𝑛 ∈ ℕ0 ( ( 𝐴 ‘ 𝑛 ) · ( 𝑥 ↑ 𝑛 ) ) ) | |
| 7 | abelth.7 | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) ⇝ 0 ) | |
| 8 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 9 | 0zd | ⊢ ( 𝜑 → 0 ∈ ℤ ) | |
| 10 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 12 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) | |
| 13 | 8 9 11 12 7 | climi0 | ⊢ ( 𝜑 → ∃ 𝑗 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → ∃ 𝑗 ∈ ℕ0 ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) |
| 15 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → 𝑗 ∈ ℕ0 ) | |
| 16 | oveq2 | ⊢ ( 𝑛 = 𝑖 → ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) = ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) | |
| 17 | eqid | ⊢ ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) | |
| 18 | ovex | ⊢ ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ∈ V | |
| 19 | 16 17 18 | fvmpt | ⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 ) = ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) |
| 20 | 19 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 ) = ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) |
| 21 | cnxmet | ⊢ ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) | |
| 22 | 0cn | ⊢ 0 ∈ ℂ | |
| 23 | 1xr | ⊢ 1 ∈ ℝ* | |
| 24 | blssm | ⊢ ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℝ* ) → ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ ) | |
| 25 | 21 22 23 24 | mp3an | ⊢ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ⊆ ℂ |
| 26 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) | |
| 27 | 25 26 | sselid | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → 𝑋 ∈ ℂ ) |
| 28 | 27 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( abs ‘ 𝑋 ) ∈ ℝ ) |
| 29 | reexpcl | ⊢ ( ( ( abs ‘ 𝑋 ) ∈ ℝ ∧ 𝑖 ∈ ℕ0 ) → ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ∈ ℝ ) | |
| 30 | 28 29 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ∈ ℝ ) |
| 31 | 20 30 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 ) ∈ ℝ ) |
| 32 | fveq2 | ⊢ ( 𝑘 = 𝑖 → ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) = ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) | |
| 33 | oveq2 | ⊢ ( 𝑘 = 𝑖 → ( 𝑋 ↑ 𝑘 ) = ( 𝑋 ↑ 𝑖 ) ) | |
| 34 | 32 33 | oveq12d | ⊢ ( 𝑘 = 𝑖 → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 35 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) | |
| 36 | ovex | ⊢ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ V | |
| 37 | 34 35 36 | fvmpt | ⊢ ( 𝑖 ∈ ℕ0 → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 39 | 1 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑥 ) ∈ ℂ ) |
| 40 | 8 9 39 | serf | ⊢ ( 𝜑 → seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ) |
| 41 | 40 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ) |
| 42 | 41 | ffvelcdmda | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) |
| 43 | expcl | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑖 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑖 ) ∈ ℂ ) | |
| 44 | 27 43 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( 𝑋 ↑ 𝑖 ) ∈ ℂ ) |
| 45 | 42 44 | mulcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ∈ ℂ ) |
| 46 | 38 45 | eqeltrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ∈ ℂ ) |
| 47 | 28 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( abs ‘ 𝑋 ) ∈ ℂ ) |
| 48 | absidm | ⊢ ( 𝑋 ∈ ℂ → ( abs ‘ ( abs ‘ 𝑋 ) ) = ( abs ‘ 𝑋 ) ) | |
| 49 | 27 48 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( abs ‘ ( abs ‘ 𝑋 ) ) = ( abs ‘ 𝑋 ) ) |
| 50 | eqid | ⊢ ( abs ∘ − ) = ( abs ∘ − ) | |
| 51 | 50 | cnmetdval | ⊢ ( ( 𝑋 ∈ ℂ ∧ 0 ∈ ℂ ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
| 52 | 27 22 51 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ ( 𝑋 − 0 ) ) ) |
| 53 | 27 | subid1d | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( 𝑋 − 0 ) = 𝑋 ) |
| 54 | 53 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( abs ‘ ( 𝑋 − 0 ) ) = ( abs ‘ 𝑋 ) ) |
| 55 | 52 54 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) = ( abs ‘ 𝑋 ) ) |
| 56 | elbl3 | ⊢ ( ( ( ( abs ∘ − ) ∈ ( ∞Met ‘ ℂ ) ∧ 1 ∈ ℝ* ) ∧ ( 0 ∈ ℂ ∧ 𝑋 ∈ ℂ ) ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) | |
| 57 | 21 23 56 | mpanl12 | ⊢ ( ( 0 ∈ ℂ ∧ 𝑋 ∈ ℂ ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
| 58 | 22 27 57 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ↔ ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) ) |
| 59 | 26 58 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( 𝑋 ( abs ∘ − ) 0 ) < 1 ) |
| 60 | 55 59 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( abs ‘ 𝑋 ) < 1 ) |
| 61 | 49 60 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ( abs ‘ ( abs ‘ 𝑋 ) ) < 1 ) |
| 62 | 47 61 20 | geolim | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − ( abs ‘ 𝑋 ) ) ) ) |
| 63 | climrel | ⊢ Rel ⇝ | |
| 64 | 63 | releldmi | ⊢ ( seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) ⇝ ( 1 / ( 1 − ( abs ‘ 𝑋 ) ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 65 | 62 64 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → seq 0 ( + , ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ) ∈ dom ⇝ ) |
| 66 | 1red | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → 1 ∈ ℝ ) | |
| 67 | 41 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → seq 0 ( + , 𝐴 ) : ℕ0 ⟶ ℂ ) |
| 68 | eluznn0 | ⊢ ( ( 𝑗 ∈ ℕ0 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑖 ∈ ℕ0 ) | |
| 69 | 15 68 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑖 ∈ ℕ0 ) |
| 70 | 67 69 | ffvelcdmd | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ∈ ℂ ) |
| 71 | 69 44 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑋 ↑ 𝑖 ) ∈ ℂ ) |
| 72 | 70 71 | absmuld | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) = ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) · ( abs ‘ ( 𝑋 ↑ 𝑖 ) ) ) ) |
| 73 | 27 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑋 ∈ ℂ ) |
| 74 | 73 69 | absexpd | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( 𝑋 ↑ 𝑖 ) ) = ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) |
| 75 | 74 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) · ( abs ‘ ( 𝑋 ↑ 𝑖 ) ) ) = ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) ) |
| 76 | 72 75 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) = ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) ) |
| 77 | 70 | abscld | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ) |
| 78 | 1red | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 1 ∈ ℝ ) | |
| 79 | 69 30 | syldan | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ∈ ℝ ) |
| 80 | 71 | absge0d | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 ≤ ( abs ‘ ( 𝑋 ↑ 𝑖 ) ) ) |
| 81 | 80 74 | breqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 0 ≤ ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) |
| 82 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) | |
| 83 | 2fveq3 | ⊢ ( 𝑚 = 𝑖 → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) = ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ) | |
| 84 | 83 | breq1d | ⊢ ( 𝑚 = 𝑖 → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ↔ ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) < 1 ) ) |
| 85 | 84 | rspccva | ⊢ ( ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) < 1 ) |
| 86 | 82 85 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) < 1 ) |
| 87 | 1re | ⊢ 1 ∈ ℝ | |
| 88 | ltle | ⊢ ( ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) < 1 → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ≤ 1 ) ) | |
| 89 | 77 87 88 | sylancl | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) < 1 → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ≤ 1 ) ) |
| 90 | 86 89 | mpd | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) ≤ 1 ) |
| 91 | 77 78 79 81 90 | lemul1ad | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) ) · ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) ≤ ( 1 · ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) ) |
| 92 | 76 91 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ≤ ( 1 · ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) ) |
| 93 | 69 37 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) = ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) |
| 94 | 93 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ) = ( abs ‘ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑖 ) · ( 𝑋 ↑ 𝑖 ) ) ) ) |
| 95 | 69 19 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 ) = ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) |
| 96 | 95 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 1 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 ) ) = ( 1 · ( ( abs ‘ 𝑋 ) ↑ 𝑖 ) ) ) |
| 97 | 92 94 96 | 3brtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) ∧ 𝑖 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( abs ‘ ( ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ‘ 𝑖 ) ) ≤ ( 1 · ( ( 𝑛 ∈ ℕ0 ↦ ( ( abs ‘ 𝑋 ) ↑ 𝑛 ) ) ‘ 𝑖 ) ) ) |
| 98 | 8 15 31 46 65 66 97 | cvgcmpce | ⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) ∧ ( 𝑗 ∈ ℕ0 ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( seq 0 ( + , 𝐴 ) ‘ 𝑚 ) ) < 1 ) ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |
| 99 | 14 98 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( 0 ( ball ‘ ( abs ∘ − ) ) 1 ) ) → seq 0 ( + , ( 𝑘 ∈ ℕ0 ↦ ( ( seq 0 ( + , 𝐴 ) ‘ 𝑘 ) · ( 𝑋 ↑ 𝑘 ) ) ) ) ∈ dom ⇝ ) |